

Important Information and Disclaimer:

TradeStation Securities, Inc. seeks to serve institutional and active traders. Please be advised that active

trading is generally not appropriate from someone of limited resources, limited investment or trading

experience, or low risk tolerance, or who is not willing to risk at least $50,000 of capital.

This course book discusses how TradeStation EasyLanguage allows you to develop and implement

custom indicators and trading strategies. However, neither TradeStation Technologies nor its affiliates

provide or suggest any specific indicator or trading strategies. We offer you unique tools to help you

design you own strategies and look at how they could have performed in the past. While we believe

this is very valuable information, we caution you that simulated past performance of a trading strategy

is no guarantee of its future performance or success. We also do not recommend or solicit the purchase

or sale of any particular securities or securities derivative products. Any securities symbols referenced

in this book are used only for the purposes of the demonstration, as an example; not a recommendation.

This book shall discuss automated electronic order placement and execution. Please note that even

though TradeStation has been designed to automate your trading strategies and deliver timely order

placement, routing and execution, these things, as well as access to the system itself, may at times be

delayed or even fail due to market volatility, quote delays, system and software errors, Internet traffic,

outages and other factors.

All proprietary technology in TradeStation is owned by TradeStation Technologies, Inc., an affiliate of

TradeStation Securities, Inc. The order execution services accessible from within TradeStation are

provided by TradeStation Securities, Inc. pursuant to a technology license from its affiliate and its

authority as a registered broker-dealer and futures commission merchant. All other features and

functions of TradeStation
®
 and EasyLanguage

®
 are registered trademarks of TradeStation

Technologies, Inc. “TradeStation”, as used in this document, should be understood in the foregoing

context.

Option Risk Disclosure

Option trading carries a high degree of risk. Purchasers and sellers of options should familiarize

themselves with option trading theory and pricing, and all associated risk factors. Please read the

Characteristics and Risks or Standardized Options available from the Options Clearing Corporation

website: http://www.optionsclearing.com/publications/risks/riskstoc.pdf or by writing TradeStation

Securities, 8050 SW 10 Street, Suite 2000, Plantation, FL 33324.

Published by TradeStation Securities Inc.

Copyright © 2002-2011 TradeStation Securities, Inc. All rights reserved. Licensed to its affiliates,

TradeStation Securities, Inc. (Member FINRA, NYSE, NFA & SIPC).

While every precaution has been taken in the preparation of this book, the TradeStation Securities

assumes no responsibility for error or omission, or for any damages resulting from the use of the

information contained herein.

http://www.optionsclearing.com/publications/risks/riskstoc.pdf

Download Course Materials

www.tradestation.com/education/downloads/ELOBJECTS

1
st
 Printing

October 2011

http://www.tradestation.com/education/downloads/ELOBJECTS

EasyLanguage Objects - Home Study Course i

Table of Contents

About this book ... iii

An Introduction to EasyLanguage Objects .. 1

Learning to Drive ... 1

EasyLanguage Code Editor ... 2

Toolbox ... 2

Component Tray .. 3

Properties Editor .. 4

EasyLanguage Dictionary .. 5

Objects in EasyLanguage ... 6

Initial Component Settings .. 6

Accessing Properties in your Code .. 7

PriceSeriesProvider .. 8

 Course Example #1 .. 9

Objects and Functions .. 12

Price Collections .. 12

PriceSeriesProvider - Count Property .. 13

 Course Example #2 .. 15

Inputs and Properties.. 17

Common Provider Properties ... 17

 Course Example #3 .. 19

 Course Example #4 .. 21

Method ... 24

Events... 25

Event Handlers ... 25

Designer Generated Code .. 26

Timer .. 26

 Course Example #5 .. 27

AccountsProvider ... 30

Collections ... 31

Looking Up Definitions and Help .. 31

 Course Example #6 .. 33

Filter Properties (TokenList) .. 36

+= Addition Assignment Operator... 36

PositionsProvider ... 37

 Course Example #7 .. 39

Method Variables ... 42

NumToStr(num,dec) .. 42

 Course Example #8 .. 43

ToString() ... 46

OrdersProvider ... 46

 Course Example #9 .. 47

LastBarOnChart ... 49

ii EasyLanguage Objects - Home Study Course

Analysis Technique – Initialized and Uninitialized Events ... 49

IntrabarPersist .. 49

OrderTicket ... 50

Enable Order Placement Objects ... 50

 Course Example #10 .. 51

Declaring an Object Variable .. 54

Tracking the Order Status of an Order Ticket ... 54

BracketOrderTicket ... 55

 Course Example #11 .. 57

MarketDepthProvider .. 61

 Course Example #12 .. 63

QuotesProvider .. 66

 Course Example #13 .. 67

FundamentalQuotesProvider ... 69

 Course Example #14 .. 71

Workbook (Excel) ... 74

 Course Example #15 .. 75

Creating Non-Component Objects .. 78

Vector Collection .. 79

 Course Example #16 .. 81

Global Dictionary Collection .. 84

 Course Example #17 .. 85

 Course Example #18 .. 89

Using – Reserved Word... 92

Form Controls .. 93

 Course Example #19 .. 95

 Course Example #20 .. 99

BONUS SECTION .. 107

Cancelling an Order ... 107

Limit Order .. 107

 Bonus Example #21 ... 109

DateTime ... 113

TimeSpan... 113

TokenList... 113

 Bonus Example #22 ... 115

Analysis Technique - UnInitialized Event... 119

Try-Catch... 119

XML Objects ... 120

 Bonus Example #23 ... 121

Appendix A ... 125

Commonly Used Fundamental Fields .. 125

Snap Shot Fields (Non Historical) .. 125

Historical Fields ... 125

Appendix B.. 126

Downloading the EasyLanguage code examples for this course .. 126

EasyLanguage Objects - Home Study Course iii

About this book

Thank you for purchasing the EasyLanguage Objects - Home Study Course.

The goal of this course is to help you become more familiar with EasyLanguage objects and how

they can be used to extend the existing EasyLanguage code you are already familiar with. You

will accomplish this by creating and examining a number of unique EasyLanguage indicators

using objects.

Throughout the book, a simple and consistent format will be followed: a set of EasyLanguage

elements and concepts will be introduced and explained, followed by one or more sample

Exercises related to the concepts.

Create and type each exercise, then apply your work to a Chart or RadarScreen as appropriate.

Prerequisites:

It is strongly recommended that you attend a live in-person or live online 2-day EasyLanguage

Boot Camp course, or purchase the EasyLanguage Home Study Course, before attempting to go

through the exercises in this course. You may also benefit from reading a little bit about object-

oriented programming concepts in a programming manual or on the Internet.

This book serves as an introduction to the EasyLanguage object enhancements that are designed

to access market data and place orders within the existing EasyLanguage framework. It is

recommended that you have an understanding and familiarity with TradeStation before beginning

this course. This includes items such as creating and managing Chart Analysis windows as well

as general file, window, workspace, and desktop management skills. An excellent place to start

would be with TradeStation’s educational resources which reside on the TradeStation Education

Center and may be accessed from the Help menu inside the TradeStation platform or at:

www.tradestation.com/education.

You may have purchased this course to use as a refresher after attending a live EasyLanguage

course or perhaps because you have not yet been able to attend in person. Whatever the reason,

you now possess a thorough, advanced-level course designed to teach you how to use

TradeStation’s EasyLanguage to understand and write custom analysis techniques and trading

strategies that include objects, properties, and methods.

The TradeStation Team

iv EasyLanguage Objects - Home Study Course

EasyLanguage Objects - Home Study Course 1

An Introduction to EasyLanguage Objects

Since its introduction, EasyLanguage has continued to evolve as a programming language that

allows traders to analyze trading ideas and implement their own trading strategies more

efficiently than with more traditional programming languages. The addition of objects to

EasyLanguage is the latest evolutionary step that provides a set of enhanced language elements

and editing tools to extend the power and flexibility of EasyLanguage while allowing for easy

integration with your existing code.

This book introduces you to new terminology and tools that will help you get started using

objects in EasyLanguage. However, it is not intended to be a general introduction to object-

oriented programming. Through a series of code examples, you will learn how to use

EasyLanguage objects in combination with many of the EasyLanguage statements with which

you’re already familiar. Whether or not you choose to use the object enhancements to develop

new EasyLanguage code, be aware that your existing analysis techniques and strategies will

continue to work with no changes.

Learning to Drive

One approach to learning about a subject might be the nuts and bolts approach. For example, we

could learn all about cars by studying internal combustion engines, steering linkages, and other

equally complex mechanical subjects...or we could simply accept that cars are sophisticated

machines and learn how to drive them. In much the same way, we could learn about objects by

studying the details of polymorphism, encapsulation, inheritance, and other complex

programming concepts...or we could simply accept the fact that objects represent sophisticated

programs containing properties and methods and learn how to drive them instead.

The first step in learning to drive is to familiarize ourselves with our vehicle. In this case, that

would be the TradeStation Development Environment and several of the object-oriented editing

tools that will help us on our journey, including the:

 EasyLanguage Editor

 Toolbox

 Component Tray

 Properties Editor

 EasyLanguage Dictionary

When working with the TradeStation Development Environment and EasyLanguage objects,

there are several new terms you should be familiar with. We’ll go into more detail about object

terminology later, but these will help get you started:

 Components – Drag and drop objects accessed from the Toolbox

 Object – A copy of a component or other object

 Class – A blueprint of the features and behavior of an object

 Properties – Data and information within an object

 Dot Operator – Used to access object properties and methods in your code

 Method – The object equivalent of an EasyLanguage function

 Event – A notification that something has changed

 Collections – Data structures of objects and object data

2 EasyLanguage Objects - Home Study Course

EasyLanguage Code Editor

The EasyLanguage Development Environment is the editor is where you enter and edit

EasyLanguage statements and code comments in an EasyLanguage document.

Whenever you start typing in the editor, the Autocomplete window will pop up to show you

possible choices based on what you’re typing. In addition to showing you familiar reserved

words and functions, the AutoComplete window will also help you select the properties of

objects you’ve created. Many of the new object related properties will be covered in this

book.

For example, with an EasyLanguage document open in the code editor, type the characters

‘va’ and the autocomplete window appears with the word ‘value1’ highlighted since this is

the first word starting with ‘va’. Typing one additional letter, so the typed characters read

‘var’, will move the highlighted word to ‘var’. Adding the letter ‘i’ will move the highlight to

the word ‘variable’. At any point, pressing the Enter key will place the full highlighted word

in your document.

Toolbox

The Toolbox tab, located on the left side of the code editor, displays a list of available

components that can be added to your EasyLanguage document as objects. An object

combines data and programs into a convenient package that you can access from

EasyLanguage code as properties and methods. Toolbox components were designed to make

it easy for you to add objects to your analysis techniques, strategies, and functions with a

minimum of coding.

Available Components (in the Toolbox)

 Price, Fundamental, Quote, and Market Depth (Level II) Data

 Account Data

 Order and Position Data

 Order Tickets (placing orders)

 Timer

 Workbook (integration with Excel spreadsheets)

Non-Component Objects (not in the Toolbox)

 Global Variable

 Vectors (data collections)

 Custom EL Window Design

 XML Database

 DateTime

 More to come…

EasyLanguage Objects - Home Study Course 3

You can add a component to an existing EasyLanguage document by highlighting its name

and then double-clicking (or dragging-and-dropping) it into the code editor (see Component

Tray). In many of the following examples, we’ll be using the Toolbox to add component

objects to our EasyLanguage documents.

Component Tray

The component tray, at the bottom of the code editor, displays the names of component

objects that have been added to your EasyLanguage document from the toolbox. By default,

the name is made up of the component name and an instance number.

Different components, or multiple instances of the same component, can be added to a single

document. We’ll talk more about how this works in later examples.

4 EasyLanguage Objects - Home Study Course

Properties Editor

The Properties tab, located on the right side of the code editor, is used to access the Properties

editor panel (see below) where you can set or review properties for a specific component in

your document. To indicate which component’s properties you want to edit in the Properties

editor, click on a component name in the component tray or select its name from the drop-

down list at the top of the Properties panel.

The Properties editor toolbar includes several different icons that let you select between the

Property pane and the Event pane along with other editing tools that we’ll cover later.

The Property pane is displayed by default. The Property column shows property names

grouped by category and the Value column shows their settings. Categories and sub-

categories can be expanded or collapsed by clicking the and symbols. The Event pane

includes an Event column and a Value column.

By default, panels will automatically close and appear as a tab again when you click out of

the panel. To keep a panel open as you make changes, click the icon at the top of the

panel. When you’re finished with the panel, click again to close it.

Note: Objects properties should not be confused with indicator properties that are used to set

styles, colors, and scaling of indicators.

EasyLanguage Objects - Home Study Course 5

EasyLanguage Dictionary

The Dictionary tab, also located on the right side of the code editor, is used to access the

Dictionary panel where you can search for summaries of EasyLanguage reserved words and

functions in addition to information about classes and class members (properties, methods,

events, etc.) that will be represented by objects in your EasyLanguage code.

By default, the Objects pane (on the left side of the Dictionary panel) displays a hierarchy of

libraries and namespaces containing EasyLanguage classes and reserved words. Clicking the

 and symbols let you navigate to other levels in the hierarchy. Click an object in the

Objects pane to see related items in the Members pane to the upper right. Click an item in the

Members pane to show a summary of that item in the Description pane to the lower right.

Icons help identify the type of object or member in both the Objects and Members panes (see

TradeStation Development Environment Help for more about icons).

For example (see above), selecting Comparison and Loops from the legacy EasyLanguage.ell

section of the Objects pane displays a list of reserved words that belong to that category in the

Members pane and a summary of the category in the Description pane.

You can also search for an item in the Dictionary by typing one or more words in the Search

box at the upper left of the Dictionary panel. The search results will display in the Objects

pane where selecting an item will display a summary in the Description pane.

As you become more familiar with objects and classes after going through this course, it may

be worth taking the time browse through the various namespaces in the Dictionary to see how

classes and their properties relate to one another. The Dictionary contains references to all of

the classes, properties, methods, events, and other object characteristics supported by

EasyLanguage. Many descriptions also have links to EasyLanguage Help topics that

summarize the functionality of the language and its related object elements.

6 EasyLanguage Objects - Home Study Course

Objects in EasyLanguage

The purpose of this course is to introduce you to the use of objects in EasyLanguage, so the

obvious question is, “Why objects?” The simple answer is that objects will let you do some

things you couldn’t do before in EasyLanguage and, at a minimum, can offer an alternate way of

doing things that you’re already familiar with doing in EasyLanguage with greater flexibility and

structure.

So, what is an object? In the simplest sense, an object represents a particular type of value, or

values, that you can access in your EasyLanguage code with a user-specified name. Hold

on…that sounds a lot like the definition of a variable, doesn’t it? In fact, that’s exactly right…an

object is used much like a variable, however, instead of it being a traditional variable holding a

single numeric, string, or boolean value as we’ve experienced up to this point using

EasyLanguage, an object variable represents an integrated package of values and related elements

that act on them.

In objects, values are referred to as Properties and can be thought of as object-specific reserved

words and variables. Object elements called Methods, which are similar to EasyLanguage

functions, are used with other elements, such as Operators and Events, to perform object specific

calculations and to manage object tasks.

In keeping with the idea of a package, property and method names are always written along with

the object they belong to (more about this in an upcoming section). For example, to refer to a

property of an object represented by a variable named myObject, you would add a ‘.’ and the

desired property name after the object variable name, as in:

 Value1 = myObject.PropertyName;

Because objects are self-contained modules that combine data and programs into a convenient

package, you don’t have to know anything about the internal coding of an object to use the

property values and methods that are supported by the object. This makes objects ideal for

accessing sophisticated data structures, such as price data streams, or manipulating otherwise

complex program elements, such as windows controls and events. In the case of objects, the type

of an object variable is associated with its class and the specific package of values represented by

a unique object variable name referred to as an instance.

What Is An Object?

 A copy of a component that knows how to access, return, and manipulate data

 Object data is returned through properties

 Objects have a descriptive name just like a variable

Initial Component Settings

Initially, you’ll be adding objects to your EasyLanguage document using components from the

Toolbox and setting them up using the Properties editor.

Most components require some initial setup before they can start collecting data or performing

the desired action in your analysis technique or strategy. For example, you might need to specify

EasyLanguage Objects - Home Study Course 7

the Symbol for which you want to reference prices using a PriceSeriesProvider object or the

AccountID number you’ll be using for placing orders with an OrderTicket object.

The course examples in this book will list the settings you’ll need to enter for each component

used in an example under the heading Components and Properties Editor Settings. This should

help you get a feel for the properties you’ll need to pay attention to when you start using

components in your own analysis techniques and strategies.

Accessing Properties in your Code

Once a component object has been added to your document and setup using the properties editor,

you will be able to access object values from your EasyLanguage code. This is done using the

dot ‘.’ operator between the name of the object and name of the property or method you want to

reference. For components, the name of the object is typically the component name followed by

an instance number (e.g. PriceSeriesProvide1). When you type the ‘.’ character following an

object name, a list of available properties and methods will appear in the AutoComplete

window. The list becomes more selective as you type the additional characters of a property

name.

As you type the ‘.’ after the name PriceSeriesProvide1 in the code editor, the autocomplete

window appears offering you a list of property choices.

For example, the following statement reads the Count property of a PriceSeriesProvider object

and assigns it to a variable. The Count property returns the number of historical intervals (bars)

represented by the specific instance of the component object named PriceSeriesProvider1.

Value1 = PriceSeriesProvide1.Count ;

Another property of a PriceSeriesProvider is the Close property. However, unlike the Count

property that refers to a single value, the Close property actually represents a series of closing

prices, starting from the current bar and going back to the beginning of the price series range. To

access an individual Close price you’ll use the square bracket [] index operator and an index

value. In this case, the index represents the number of bars ago relative to the interval setting of

the object, very much like with the standard Close reserved word in EasyLanguage represents the

number of bars ago relative to the bar interval settings in a chart. This type of property, that

represents a series of values accessed using a bracketed index value, is called a collections. More

about this in the next section.

Plot1(PriceSeriesProvide1.Close[0]);

8 EasyLanguage Objects - Home Study Course

In this example, the word Close[0] after the ‘.’ is a property of an object named

PriceSeriesProvide1 that represents the closing price of 0 bars ago within the collection of closing

prices available to the object. Note that, unlike the similar EasyLanguage reserved word named

Close, you must always specify an index [0] as part of the property identifier when referring to an

individual closing price of such a collection property.

Once you’ve added a property reference to your EasyLanguage code, you can right click on the

property name and click Definition of … (PriceseriesProvide1.Close in this case) from the popup

shortcut menu to read the help topic for the selected object and related property.

PriceSeriesProvider

The PriceSeriesProvider component is an object that includes collections of real-time and

historical price values for a specified symbol, at some bar interval, over a historical data range.

Each PriceSeriesProvider object can be thought of as a virtual chart providing access to price

properties having familiar names such as High, Low, Open, Close, Volume, Time, and

OpenInterest where individual prices can be referenced using an index that represents the number

of ‘bars ago’. However, unlike data in a chart, a PriceSeriesProvider object lets you predetermine

the symbol and interval to be accessed by your analysis technique independent of the symbol and

interval settings in your chart or grid row. The following list some important characteristics of a

Price Series Provider:

 Access to the bar data points for any symbol

 Aligned historically with Data1 bars

 Can be used with some standard EL functions

 Symbol, interval, and range are independent of Data1 symbol

Multiple PriceSeriesProvider components can be included in an analysis technique to support

multiple data analysis without requiring the component’s symbol to be included as a data stream

in the chart or grid row. This means that you can use objects to create multi-data indicators for

use in RadarScreen and to make it easier to set up multi-data analysis in charts. In addition, you

can optionally access Tick and Volume related values, including up/down ticks and up/down

volume, independent of the chart or grid interval settings.

The PriceSeriesProvider also supports an Updated event that will trigger in your EasyLanguage

code when an underlying price value managed by the provider has changed.

EasyLanguage Objects - Home Study Course 9

 COURSE EXAMPLE #1

Objectives: (PriceSeriesProvider Close Indicator)

 Drag a PriceSeriesProvider component into the document

 Use the Properties editor to set component object properties

 Plot a property value from the component object

 Understand the difference between Price Series Provider data and chart data

Indicator: $01_DailyBarClose

This example uses a Price Series Provider component to access and plot the daily Close over

the bars on a 30-minute chart.

Workspace: $01_DailyBarClose

Building the Chart

Create: 30 min chart

Insert Indicator: $01_DailyBarClose

Components and Properties Editor

PriceSeriesProvide1:

 Symbol: symbol (under category Filters)

 IntervalType: daily (under categories Filters-Interval-General)

 IntervalSpan: 1 “ ”

 Type years (under categories Filters-Range-General)

 Years 2 “ ”

Indicator Properties

Scaling: Same Axis as Underlying Data

10 EasyLanguage Objects - Home Study Course

Indicator Exercise #1: ‘$01_DailyBarClose’

Convention Notes: The EasyLanguage code that you need to type in each exercise will be shown

in courier font. Code that has been copied from another exercise, or automatically inserted by

a component, will have a light grey background. Whenever EasyLanguage Reserved Words or

Functions are referenced, they will be identified in single quotes (e.g. ‘EntryPrice’). Whenever a

course exercise input or variable is referenced, it will be identified in italics, e.g., myInput.

Create a new Indicator and name it: ‘#01_DailyBarClose. We will use the # naming convention

to keep the course exercises separate from the course downloadable examples that begin with a $.

The first thing we’re going to do is to click on the Toolbox tab at the left edge of the code editor

window to open the Toolbox panel. Locate the PriceSeriesProvider component, then click and

drag the component name into the code editor. The default name PriceSeriesProvide1 will

appear in the component tray at the bottom on the code editor window.

Now, click the Properties tab at the right edge of the code editor to open the Properties panel and

make sure that PriceSeriesProvider  is the specified component at the top of the Properties editor.

Under the Filters category, expand open the Interval and Range sections so that you can set initial

values for the PriceSeriesProvide1 component to specify what price data to collect. First, type the

word ‘symbol’  next to the Symbol property. Under Interval, change the IntervalType to daily 

and the IntervalSpan value to 1 . Then, under Range, change the Type to years 

and the Years

value to 2 . Note: The Type property is a number of rows above the Years property, so be sure to

EasyLanguage Objects - Home Study Course 11

enter the value in the right row. The component is now set to get daily price data for symbol for the

last two years.

You will now be able to use the PriceSeriesProvide1 component as an object in your code to

access prices for the current symbol in a chart using the interval and range settings you entered.

In this example, we’ll add a Plot statement to display the last Close from the

PriceSeriesProvide1 object on top of the bars on the chart.

To access the property of an object in your code, type a dot operator ‘.’ after the object name

followed by the name of the object property, in this case ‘.Close’. Since we want to display the

current Close for this property, we’ll add ‘[0]’ after the property name to specify the closing

price of the current bar.

plot1(PriceSeriesProvide1.Close[0],"Daily Close");

Next, place the edit cursor in a blank area of your EasyLanguage document and right-click to

access the shortcut menu, then select ‘Properties…’ at the bottom of the shortcut menu. On the

Scaling tab of the Indicator Properties dialog, change the Axis setting to Scale On: Same Axis as

Underlying Data to show the plot on top of the bars.

Verify the Indicator. If not already displayed, you should open the EasyLanguage Output bar

from the View-Toolbars-Output menu. This allows you to see any verification errors and helpful

information on correcting them.

12 EasyLanguage Objects - Home Study Course

Objects and Functions

In analyzing market data, it’s common to use a calculated value based on a range of prices, such

as the moving average of closes over a specified number of bars. With legacy EasyLanguage you

might do that using a function and a price:

Value1 = Average(Close,10);

The 10 bar average of Closes for the current chart is assigned to Value1. You can then plot

Value1, or use it in another calculation or expression. This is possible because the reserved word

Close doesn’t just represent the current Close, but contains a series of bar Closes from the current

bar to MaxBarsBack.

In a similar manner, the object property PriceSeriesProvide1.Close, when written without an

index, represents a collection of Close prices based on the interval and range specified for the

price series component. The following assigns the 10- bar average of Closes from the

PriceSeriesProvide1 object to Value2:

Value2 = Average(PriceSeriesProvide1.Close,10);

Typically, an object or property that contains a collection of numeric price values can be used in

combination with a function input that is an EasyLanguage numericseries. You can inspect the

input types for any function by right-clicking on the function name in your code and selecting

“Open the Function – NAME”.

For example, looking at the inputs for the Average function (shown below), the Price input is a

numericseries that will accept a reserved word containing historical values (such as High, Low,

Open, Close, etc.) in addition to accepting an object with a collection of prices.

Average function, first three lines of code:
Inputs:
 Price(numericseries),
 Length(numericsimple) ;

Price Collections

A collection is a type of object (or property) that, much like an EasyLanguage array, holds

multiple values that are referenced using an index. For example, a price property, such as .Close

in a PriceSeriesProvider object, holds a series of Closing prices for the range of intervals

specified for the component. As you did in the previous example, you can refer to an individual

Close using a square bracket [] and an index number following the property name, such as

PriceSeriesProvide1.Close[2] to get the close of two intervals ago from an component object

named PriceSeriesProvide1.

However, when you eliminate the square brackets, the property PriceSeriesProvide1.Close refers

to the entire collection of closing prices for the component and can be passed as a parameter to

any standard EasyLanguage function that accepts a numeric series. For example, the following

calculates and plots the average Close over the last 15 intervals from the PriceSeriesProvide1

objects.

Plot1(Average(PriceSeriesProvide1.Close,15);

EasyLanguage Objects - Home Study Course 13

Although we’ll go into more detail about collections later, for now all you need to know is that

price collections, such as in a PriceSeriesProvider can return individual price values using square

brackets containing a ‘bars ago’ index or can be passed to a function as a price series without the

brackets.

PriceSeriesProvider - Count Property

The PriceSeriesProvider component consists of a collection of prices for a symbol over a

specified range of intervals. The Count property tells you how many historical prices are

available in the PriceSeriesProvider collection relative to the current bar, as the indicator runs

through the historical bars on a chart or RadarScreen row.

To be sure that you always have enough price history in the PriceSeriesProvider to perform a

calculation on a price collection, you should check the value of the Count property before

executing the calculation code. For example, if you want to be sure that you have enough price

data to calculate a specified moving average; you could use the Count property as follows:

Input: MovAvgLen(10);
If PriceSeriesProvide1.Count > MovAvgLen then
 Plot2(Average(PriceSeriesProvide1.Close,MovAvgLen));

14 EasyLanguage Objects - Home Study Course

EasyLanguage Objects - Home Study Course 15

 COURSE EXAMPLE #2

Objectives: (MovAvg + Close Indicator)

 Use a PriceSeriesProvider object with the standard EasyLanguage ‘Average’ function

Indicator: ‘$02_DailyAvgClose’

This indicator uses a PriceSeriesProvider component to access and plot a 10-day moving

average over the bars.

Workspace: $02_DailyAvgClose

Building the Chart:

Create: 30 min intraday chart

Insert Indicator: $02_DailyAvgClose

Components and Properties Editor Settings:

PriceSeriesProvide1:

 Symbol: symbol (under category Filters)

 IntervalType: daily (under categories Filters-Interval-General)

 IntervalSpan: 1 “ ”

 Type years (under categories Filters-Range-General)

 Years 2 “ ”

16 EasyLanguage Objects - Home Study Course

Indicator Exercise #2: ‘$02_DailyAvgClose’

Convention Notes: The EasyLanguage code that you need to type in each exercise will be shown

in courier font. Code that has been copied from another exercise, or automatically inserted by

a component, will have a light grey background. Whenever EasyLanguage Reserved Words or

Functions are referenced, they will be identified in single quotes (e.g. ‘EntryPrice’). Whenever a

course exercise input or variable is referenced, it will be identified in italics, e.g., myInput.

For this example, we’ll start with the #01_DailyBarClose indicator created in Course Example

#1. Save a copy of it as #02_DailyAvgClose. Again, we’ll use the # naming convention to keep

the course exercises separate from the course downloadable examples.

Since the PriceSeriesProvide1 component was already a part of the indicator you just created, you

won’t need to add that again. However, if you’re starting from scratch, you would drag the

PriceSeriesProvider component from the Toolbox into the document and set up the component

Symbol, Interval, and Range values using the Property editor as specified under the Components

and Properties Editor Settings above.

The plot statement from the previous example displays a line that connects the most recent Close

of each PriceSeriesProvide1 bar to the next. Remember, it is virtually identical to plotting the

legacy reserved word Close on the same bars, except that the object property requires you to

specify the current Close using a ‘[0]’ after the property name.

Now, let’s declare an input for the length of a moving average just before the initial plot

statement:

input: MovAvgLen(10);

plot1(PriceSeriesProvide1.Close[0],"Daily Close");

Next, we’re going to add a second plot that shows the moving average of the closing prices in the

PriceSeriesProvide1 component collection. We’ll check the .Count property of the component to

be sure that it contains enough price data to perform the calculation.

The Average function accepts two parameters where the first represents a series of prices and the

second the number of bars back on which to calculate the average. Use the Close property

(without square brackets) to refer to the entire collection of Close prices based on the

PriceSeriesProvide1 interval and range settings. The second parameter refers to the number of

intervals back from the current price on which to calculate the average.

If PriceSeriesProvide1.Count > MovAvgLen then

plot2(Average(PriceSeriesProvide1.Close,MovAvgLen),"MovAvgLen");

Verify the Indicator.

EasyLanguage Objects - Home Study Course 17

Inputs and Properties

In addition to setting the initial component properties to a specific value in the Properties editor,

you can also set a property to use an EasyLanguage input as its value. This allows you to change

the input value when you apply the analysis technique or strategy to a chart or grid and have that

value used by the component.

For example, when setting the Symbol property of a component object, such as PriceSeriesProvide1,

you might have typed “SPY” as the symbol value so that every time your analysis technique runs,

the component will access the prices for SPY using the interval settings you specified in the

Properties editor. Let’s say you wanted to be able to change this symbol using an input, just like you

would when writing standard EasyLanguage code. Click on “SPY” to the right of the word Symbol,

followed by clicking on the icon at the top of the Properties editor. This inserts the word

iSymbol1 as the value for the symbol property and adds the following input statement to your

EasyLanguage code, making the entered symbol name the default input.

Input: string iSymbol1("SPY");

Note that if you hadn’t previously set the symbol value in the Properties editor, the initial input value

for iSymbol1 would be set to "".

Common Provider Properties

A number of toolbox components include the word ‘provider’ at the end of their name. Using

the Properties editor, you’ll find that they all include both Load and Realtime properties under the

category ‘Common’. These properties are used to control the initial state of provider components

and both are set to True by default. The Load property, when true, instructs the provider to

automatically create a connection to the data that is associated with the provider when your

analysis technique or strategy first loads. For example, the AccountsProvider would connect to

the data associated with your specified accounts, while the PriceSeriesProvider would connect to

the price data stream for the specified symbol, etc. The Realtime property, when true, instructs

the provider to continuously request realtime data updates for the associated data. For example,

the PositionsProvider would calculate new position values based on the realtime price changes of

requested symbol, while the MarketDepthProvider would report realtime changes in bid/ask

levels, etc.

In most cases you won’t need to modify these settings; however, if you want to set up a provider

component that will later be activated when a condition in your code occurs, you could set the

Load and Realtime properties to false in the properties editor and then assign them to true at the

appropriate place in your code. Also, if you want to change a an already loaded provider’s filter

property setting from within your code, you’ll need to temporarily set the Load property to false

to turn off the data connection, assign a new value to the filter property, and then set Load back to

true to re-establish the data connection based on the new filter setting.

18 EasyLanguage Objects - Home Study Course

EasyLanguage Objects - Home Study Course 19

 COURSE EXAMPLE #3

Objectives: (RelStrengthRS)

 Add a Symbol property input

 Perform multi-data analysis in RadarScreen®

Indicator: ‘$03_RelStrengthRS’

This indicator uses a pair of PriceSeriesProvider components to calculate the percent change

of two symbols over a specified number of days.

Workspace: $03_RelStrengthRS

Building the RadarScreen:

 Create: RadarScreen window with symbols set to Daily interval

Indicator Properties-Grid Style: Set each indicator plot to Number using 2 decimal places

Insert Indicator: $03_RelStrengthRS

Components and Properties Editor Settings:

PriceSeriesProvide1:

 Symbol: iSymbol1 (add as an Input)

 IntervalType: daily (under categories Filters-Interval-General)

 IntervalSpan: 1 " "

 Type years (under categories Filters-Range-General)

 Years 2 " "

Indicator Exercise #3: ‘$03_RelStrengthRS’

In this indicator, we’ll be comparing the performance of the current symbol in each row of

RadarScreen against a benchmark symbol. This type of multi-data analysis was not possible in

RadarScreen before objects where introduced. The performance of current symbol in each row is

calculated using the standard Close reserved word, but the benchmark performance is calculated

using the collection of Close prices from a PriceSeriesProvider component object for a reference

symbol.

Create a new Indicator and name it: ‘#03_ RelStrengthRS.

Open the Toolbox, then locate the PriceSeriesProvider component and drag the component name

into the code editor. The default name PriceSeriesProvide1 will appear in the component tray at

the bottom of the code editor window.

Open the Properties Editor Click on the empty text box to the right of the word Symbol, then type

the symbol name “SPY” (in quotes) as our reference symbol. Since we may want to change the

20 EasyLanguage Objects - Home Study Course

reference symbol when we apply the indicator to a chart, we’ll convert this symbol value to an

input by clicking on the toolbar icon button at the top of the Properties editor. The word

iSymbol1 appears next to Symbol in the Properties editor and you should see the following line

inserted at the top of your EasyLanguage code with the default symbol “SPY” as its initial value.

Input: string iSymbol1("SPY");

Still in the Properties Editor, locate the Filters category and expand open the Interval and Range

sections so that you can set initial values for the PriceSeriesProvide1 component to specify what

price data to collect. Under Interval, change the IntervalType to daily

and the IntervalSpan value to

1. Then, under Range, change the Type to years

and the Years value to 2. Note: The Type

property is several rows above the Years property, so be sure to enter the value in the right row.

The component is now set to get daily price data for the PriceSeriesProvide1 symbol for the last

two years.

In your code, declare an additional input value that sets the default number of bars back to use for

the performance look back value.

Input: LookBack(20);

Declare three variables to hold the percent change calculations that are used to measure the

performance of the current symbol in each row, the benchmark reference symbol, and the relative

difference between them.

Vars: SymbolPerf (0), BenchPerf(0), RelPerf(0);

Next we’ll calculate the percent change value for the base (current) symbol and for the

benchmark symbol.

The performance of the current row symbol is calculated using the reserved word Close which is

passed as a parameter to the PercentChange function along with the bar range on which to

calculate the percent change.

SymbolPerf= PercentChange(Close,LookBack);

The benchmark symbol is calculated using the collection of Close prices from the

PriceSeriesProvide1object.

BenchPerf = PercentChange(PriceSeriesProvide1.Close,LookBack);

The relative performance is the difference between the percent change for both symbols and is

calculated.

Relperf = (SymbolPerf-BenchPerf);

Finally, the calculated values are plotted. The reference values are multiplied by 100 to display as

a percentage.

plot1(RelPerf * 100,"Rel Perf");

plot2(SymbolPerf * 100, "Sym Perf");

plot3(BenchPerf * 100, "Bench Perf");

Verify the Indicator.

Insert the indicator to a RadarScreen window with daily symbol intervals.

EasyLanguage Objects - Home Study Course 21

 COURSE EXAMPLE #4

Objectives: (RelStrengthFixed)

 Use multiple Price Series Provider components

Indicator: ‘$04_ RelStrengthFixed’

This indicator uses a pair of PriceSeriesProvider components to calculate the percent change

of two symbols over a specified number of days.

Workspace: $04_RelStrengthFixed

Building the Chart:

Create: 30 min intraday chart

Insert Indicator: $04_RelStrengthFixed

Components and Properties Editor Settings:

PriceSeriesProvide1:

 Symbol: iSymbol1 (under category Filters) (add as an Input)

 IntervalType: daily (under categories Filters-Interval-General)

 IntervalSpan: 1 " "

 Type years (under categories Filters-Range-General)

 Years 2 " "

PriceSeriesProvide2:

 Symbol: symbol (symbol in chart or row)

 IntervalType: daily (under categories Filters-Interval-General)

 IntervalSpan: 1 " "

 Type years (under categories Filters-Range-General)

 Years 2 " "

22 EasyLanguage Objects - Home Study Course

Indicator Exercise #4: ‘$04_ RelStrengthFixed’

This indicator is similar to the previous example, except this is designed to plot the relative

performance on a chart using a pair of PriceSeriesProvider components that are both set to daily

intervals. This allows you to compare the daily performance of the current symbol against the

daily performance of a benchmark symbol, regardless of the interval setting of the chart.

In this example, let’s start with the #03_DailyAvgClose indicator created in Course Example #3.

Save a copy of it as #04_RelStrengthFixed. Again, we’ll use the # naming convention to keep the

course exercises separate from the course downloadable examples.

Since the PriceSeriesProvide1 component was already a part of the indicator you just created, you

won’t need to add it again. However, if you’re starting from scratch, drag the PriceSeriesProvider

component from the Toolbox into the document and set up the component Symbol, Interval, and

Range values for PriceSeriesProvide1 using the Property editor as specified under the

Components and Properties Editor Settings for this exercise.

Next, we’re going to add a second component from the Toolbox. Locate the PriceSeriesProvider

component, then click and drag the component name into the code editor. A second component

with the default name PriceSeriesProvide2 will appear in the component tray at the bottom on the

code editor window.

With the PriceSeriesProvide2 component selected, go to the Properties Editor. Next to the Symbol

property, type the word symbol to set it to the current symbol for the chart. Under the Filters

category, expand open the Interval and Range sections so that you can set initial values for the

PriceSeriesProvide1 component to specify the price data to collect. In the Interval section, change

the IntervalType to daily

and the IntervalSpan value to 1. Then, under Range, change the Type to

years and the Years value to 2. The second component is now set to get daily price data for symbol

for the last two years.

We’ll be using the same input names as in Exercise #3; however, let’s change the initial

LookBack value to ‘8’.

Input: string iSymbol1("SPY");

Input: LookBack(8);

The variable names will also be based on those in Exercise #3, however, let’s change the name of

the current symbol performance variable to SymbolPerf.

Vars: SymbolPerf(0), BenchPerf(0), RelPerf(0);

EasyLanguage Objects - Home Study Course 23

Calculate the percent change values for the base (current) symbol and for the benchmark

(reference) symbol. We’re going to place the performance calculations inside an "if" statement

that will calculate the daily performance values on the first bar of each day. Remember, we’re

going to get the Close of the daily interval of the reference symbol from the second price series

provider component we created so that the performance will always be calculated based on the

daily interval of the two providers, even if the chart interval is different.

The current symbol performance is calculated using the collection of Close prices in the

PriceSeriesProvide2 component object which is passed as a parameter to the PercentChange

function along with the number of bars to look back when calculating the percent change. The

benchmark symbol performance is calculated using the collection of Close prices in

PriceSeriesProvide1 (based on the input iSymbol1) and the same PercentChange look back

length.

If Date <> Date[1] then begin

SymbolPerf = PercentChange(PriceSeriesProvide2.Close, LookBack) ;

BenchPerf = PercentChange(PriceSeriesProvide1.Close, LookBack);

end;

Calculate the relative performance difference between the base and reference percent change

values.

RelPerf = SymbolPerf - BenchPerf;

Plot the three calculated values, this time removing the *100 statement since we don’t need the

values to plot as percentages on a chart. Add a fourth plot for a zero reference line against which

to compare the positive or negative performance values.

Plot1(SymbolPerf , "Symbol Perf");

Plot2(BenchPerf , "Bench Perf");

Plot3(RelPerf , "Rel Perf");

Plot4(0);

Right-click in your Indicator document and select Properties at the bottom of the right-click menu

to access the Indicator Properties dialog. Select the Scaling tab and verify that the Axis setting is

Scale On: Right Axis.

Verify the Indicator.

24 EasyLanguage Objects - Home Study Course

Method

A method is a code structure containing EasyLanguage statements that are local to an

EasyLanguage document. A method is referenced in your code very much like you would

reference a function, but, because it is local, it runs faster and allows you to directly read or write

to other variables in your analysis technique or strategy. Although methods, like functions, can

accept input parameters and return a value, a void method allows you to execute a set of

statements without requiring a return value which allows a method to appear by itself in your

code, much like some reserved words, without needing to be assigned to a variable. The

following is a summary of method features:

 Methods can return values

 Methods can have one or more parameters

 Methods can modify standard variables

 Methods can declare local variables that are only seen within the method

 Methods are typically faster than standard EasyLanguage functions

Methods are declared using the method reserved word followed by the return type, the name of

the method, and any method parameters. Method parameters are surrounded by parentheses and

separated by commas. The parentheses are required even if no parameters are specified. The body

of the method contains a begin/end block containing the EasyLanguage statements preceded by

any local variable declaration, if desired.

method void myMethod(int param1)
var: double localVar1, int localVar2
begin
 { EasyLanguage statements }
 localVar1 = myObject.Close[0];
 localVar2 = 10;
 if param1<localVar2 then
 plot1(localVar1);
end;

A return value of void indicates that the method does not return a value and empty parentheses

would indicate that the method requires no parameters.

The code within an EasyLanguage method is executed when the method is called and not

necessarily every time the analysis technique or strategy is evaluated. In the following example,

the statements in the method above would be executed in your document when Condition1 is true.

This is much like would be the case for an external function; however, the method is local to your

document. Methods are commonly used when code needs to be called more than once in a

document but are also useful for organizing EasyLanguage code into named modules. In

addition, methods are used as event handlers and associated with event properties of an object.

Value1 = 5;
If Condition1=True then
 myMethod(Value1);

Local methods in an EasyLanguage document must always follow the EasyLanguage declarations

for Inputs, Vars, and Arrays and come before the main body of code in your analysis technique.

EasyLanguage Objects - Home Study Course 25

Events

An event is a way for an object to provide notifications to the client program (your EasyLanguage

code) when something of interest occurs within that object. One of the most familiar uses for

events is in programming graphical controls, such as a button, where the program is notified

when a user clicks a button. Another example is a timer control that notifies the calling program

when a specified time counts down to zero. Here are some features of events:

 Events listen for something to happen or change

 Events call an event handler method when triggered

 Code within an event handler method is executed to process an event

 Events are connected to event handler methods in the properties editor

Events, however, need not be used only for graphical interfaces or timers. Many data provider

components in EasyLanguage also support events to notify you when data related to an object

changes, such as updated prices, positions, or account status. In the past, you might have had to

write a polling loop to look for changes in the incoming data, but with object events this can

happen automatically by adding an event handler method to your analysis technique or strategy.

Event Handlers

In EasyLanguage, event handlers are methods in your EasyLanguage code that are called when a

corresponding event occurs within an object. The event handler method is where you create your

own EasyLanguage statements to program how your analysis technique, function, or strategy

responds to the event.

For an event handler method to become useable, it must be associated with an event. With

component objects this is done by associating the method with a named event using the Properties

editor. For example, with a Timer component in your EasyLanguage document, the Event

section of the Properties editor shows a blank Elapsed property.

Double-clicking on Elapsed will automatically create an event handler method in your

EasyLanguage code and associate that method (Timer1_Elapsed in this case) with the Elapsed

event. Now, every time the Elapsed event of Timer1 fires, the EasyLanguage code you add to the

associated method will be executed. Event handler methods typically have a Sender and an Args

parameter as shown. These parameters are used to receive information about the event and

should not be edited by you.

method void Timer1_Elapsed(elsystem.Object sender,
elsystem.TimerElapsedEventArgs args)
begin
 { Insert your EasyLanguage statements below }
end;

26 EasyLanguage Objects - Home Study Course

For components, the event handler method name is associated with the event using the Properties

Editor.

For non-component objects, you assign the name of the event handler method to the event

property of an object in your code using the following syntax:

Object.EventName += Method_Name;

Designer Generated Code

In addition to the code that you write using the EasyLanguage editor, your analysis document also

includes information about each component that is automatically programmed for you when a

component is created and its properties edited. This information resides in a special read-only

page referred to as Designer Generated Code that you access from the View menu of the code

editor.

Designer Generated Code is created by the system and is updated through the Properties editor

whenever you enter or change a property value for a component. It cannot be directly modified

by you using the code editor.

When you create an Event using the Properties editor, such as the Elapsed event for a Timer

object, an EasyLanguage statement is added to the Designer Generated Code block that assigns

the name of the event handler method (that is located in the main section of your EasyLanguage

code) to the component’s event.

timer1.elapsed += timer1_elapsed;

In the above example, whenever a Timer1 component object triggers an Elapsed event, the

method named ‘timer1_elapsed’ in your EasyLanguage code is called and the statements within

the method are executed.

For now, it’s not necessary that you understand the Designer Generated Code created by

components, but it’s an interesting resource to begin to develop an understanding of how

EasyLanguage objects are created and manipulated.

Timer

The Timer component creates an object that lets you set a timer that counts down a specified

number of milliseconds and calls an event handler method when the time expires. The timer can

be set to automatically restart every time it expires so that the event handler can be called over

and over again.

EasyLanguage Objects - Home Study Course 27

 COURSE EXAMPLE #5

Objectives: (Bar Countdown Indicator)

 Use a toolbox component to create a timer object

 Use the Properties editor to create an event

 Run some EasyLanguage code on the event notification

Indicator: ‘$05_BarPcntLeft’

This indicator uses a Timer component to set a timer that repeatedly updates the time of day

every 1000 milliseconds. 1000 milliseconds = 1 second.

Workspace: $05_BarPcntLeft

Building the Chart:

Create: 1- minute chart

Insert Indicator: $05_BarPcntLeft

Components and Properties Editor Settings:

Timer1:

 Interval : 1000 (under category General)

 AutoReset: True " "

 Enable: True " "

 Elapsed: Timer1_Elapsed

28 EasyLanguage Objects - Home Study Course

Indicator Exercise #5: ‘$05_BarPcntLeft’

Create a new Indicator and name it: ‘#05_BarPcntLeft’. We will use the # naming convention to

keep the course exercises separate from the course downloadable examples that begin with $.

Click on Toolbox tab at the left edge of the code editor window and drag the Timer component

into the code editor. The default name Timer1 will appear in the component tray at the bottom on

the code editor window.

Now, click the Properties tab at the right edge of the code editor to open the Properties panel and

make sure that Timer1 is the specified component at the top of the Properties editor.

Under the General category of the Property pane, set the Interval value to 1000. This value is in

milliseconds, so you’re setting the timer to count down to zero in one second. For this example,

we’ll set the AutoReset property to True so that the timer will automatically reset and begin

counting down again once a second. Also, set Enable to True so that the timer will begin running

as soon as the analysis technique is applied to the analysis window.

Next, switch to the Event pane of the property editor by clicking the icon. You will see

Elapsed listed in the Event column with a blank value. The Elapsed event will be triggered by the

Timer1 object whenever the timer counts down to zero where we’ll want to call an event handler

method in our EasyLanguage document. Simply double-click on the event name Elapsed to create

a method in the code editor and have the new method name added to the Value column.

A method named Timer1_Elapsed has been added to your document. Remember, the parameters

within the parentheses of the event handler are auto generated and should not be removed or

changed by you. Your EasyLanguage code should be inserted between the begin and end

statements.

method void Timer1_Elapsed(elsystem.Object sender,

 elsystem.TimerElapsedEventArgs args)

begin

 { Insert your EasyLanguage statements below }

end;

On the line above the Timer1_Elapsed method statement, type three variable declarations. The first

of these will be an intrabarpersist variable the counts the number of elapsed timer events for

the current bar. This is an intrabarpersist variable because it needs to retain each new value after

every tick update instead of being reset the way a normal variable would be. The second variable

holds the maximum counter value. The third variable holds the bar number of the last closed bar.

var: intrabarpersist iCounter(60),iMax(60),barnumb(0);

Note: Remember that the variable declaration statement always needs to be above any methods.

EasyLanguage Objects - Home Study Course 29

Between the begin and end statements in the Timer1_Elapsed method you are going to type one

if statement that decrements the iCounter value for every timer event and another if statement

that plots the bar counter histogram.

method void Timer1_Elapsed(elsystem.Object sender,

 elsystem.TimerElapsedEventArgs args)

begin

 If iCounter > 0 then

iCounter = iCounter-1;

 If currentbar > barnumb then

PlotValues();

end;

Add another method named PlotValues() that will be called when a timer event occurs. The first

plot shows a histogram bar of the percentage of bar time remaining. The second and third plots

show reference lines to keep the indicator the same size.

Method void PlotValues()

begin

plot1((iCounter/iMax)*100, "PctLeft");

end;

The last section of code checks to see if the last bar on the chart has closed and resets the counter

and maximum counter values based on the number of minutes in the bar interval. It also saves

the closing bar number so that the next plot will occur only after the next bar tick.

Once If Bartype = 1 then

 iMax = Barinterval*60;

if LastBarOnChart then begin

 if BarStatus(1) = 2 then begin

 plot1(0, "PctLeft");

 iCounter = iMax;

 barnumb = currentbar;

 end;

end;

plot2(100, "100");

plot3(0, "zero");

Verify the Indicator.

30 EasyLanguage Objects - Home Study Course

AccountsProvider

The AccountsProvider component creates an object that lets you reference values for your real or

simulated TradeStation accounts.

The Accounts filter property, listed in the Properties editor for an AccountsProvider object, is

used to specify which account, or accounts, you want to access data from. Using the filter criteria

you specify, the AccountsProvider object builds a collection of accounts and sets the Count

property to the number of elements in the collection. By default, a blank Accounts filter will

collect account information from all active brokerage accounts.

The Updated event can be used with the AccountsProvider to allow your code to be notified when

a value associated with any of the referenced accounts changes. This is especially important

when an account changes for a symbol that is not in your chart or grid but that you want to know

about in your analysis technique or strategy.

In your code, you’ll typically use the Count property to determine if any accounts were found by

the AccountsProvider before trying to access an indexed element from the Account collection.

The Account property of AccountsProvider1 represents a collection of one or more accounts

(actually Account objects), along with a set of properties that can be read from each account.

For example, you would reference the first account in the collection by appending the square

bracket index identifier, in this case [0], after the Account property of the provider component.

AccountsProvider1.Account[0]

Once the specific Account is referenced, you add the property of the account you’re interested in

by including a ‘.’ and property name after the indexed Account[0] identifier, such as

.BDAccountNetWorth for the beginning-day net worth of the first account in the collection.

Value1 = AccountsProvider1.Account[0].BDAccountNetWorth;

If you specify just a single account number for the Accounts property in the Properties editor,

your collection will include data for Account[0]. However, if you requested data for three

accounts (such as “SIM12345,SIM67890, SIM1357X”), the second account would be referenced

as Account[1] and the third would be Account[2]. The following represents a statement that

reads the value of the Unsettled funds property of Account[2] (third account zero based) from a

provider containing as least three accounts.

Value1 = AccountsProvider1.Account[2].UnsettledFund;

EasyLanguage Objects - Home Study Course 31

Collections

Component objects often manipulate collections of items. For example, the Accounts Provider

object manages a collection of all your accounts that you can access (specified by the Accounts

filter).

The following statement displays the account number of the first account (0
th
 index) in the

collection:

Plot1(AccountsProvider1.Account[0].AccountID);

The Count property tells you how many items are in the object collection list in order to navigate

through the collection list. If count is 0, then no items are in the collection list.

Value1 = AccountsProvider1.Count;

The Accounts filter property, listed in the Properties editor of an Accounts Provider object, is

used to specify which account, or accounts, you want to access data from. Using the filter criteria

you specify, the Accounts Provider object builds a collection of accounts and sets the Count

property to the number of elements in the collection. By default, a blank Accounts filter will

collect account information from all your active brokerage accounts.

Looking Up Definitions and Help

There are several ways of finding out more about the properties and methods for a component.

For example in the Properties Editors, when you select a component property, the lower panel of

the editor displays a brief description of the property from the dictionary. Just above the

description pane is a link that reads Help about Property that will take you to the Help topic for

the class the component is based on. Help topics typically include a list of properties, methods,

and events for a given class in addition to links to related classes and properties.

When in the code editor, you can access Help for an object by right-clicking on the object

reference in the code and then selecting Definition of object… from the right-click menu. This

will take you directly to the Help topic for the object class.

By the way, if you right-click on a property name, the Definition of property… menu item will

take you to the class containing that property. However, be aware than a property may be in a

different class from the component since many properties are inherited from other classes and

their definitions will be contained in the parent class. An example of this would be the

.RTAccountNetWorth property that is accessed from the AccountsProvider component but is

really a member of the Account class that is associated with the Account[0] property of the

component.

32 EasyLanguage Objects - Home Study Course

EasyLanguage Objects - Home Study Course 33

 COURSE EXAMPLE #6

Objectives: (Account Profit & Loss Indicator)

 Create an object that can access your equities account information

 Use the Count property to see if you have an Account

 Rename provider to a shorter name

Indicator: ‘$06_AccountPL’

This indicator uses an AccountsProvider component to access account values for a specified

equities account. The difference between the account’s Beginning-Day Net Worth and Real-

Time Net Worth property values is calculated and plotted as a histogram. The color of the

plot is green if the account P&L is greater than 0 and is red if the net worth difference is less

than 0.

Workspace: $06_AccountPL

Building the Chart:

Create: 5- minute chart with 5 days of price data

Insert Indicator: $06_AccountPL

Components and Properties Editor Settings:

AccP:

 Name: AccP (changes component name)

 Accounts: iAccounts1 (add as an Input)

 Updated: AccP_Updated

34 EasyLanguage Objects - Home Study Course

Indicator Exercise #6: ‘$06_AccountPL’

Create a new Indicator and name it: ‘#06_AccountPL. We will use the # naming convention to

keep the course exercises separate from the course downloadable examples that begin with $.

Click on Toolbox tab at the left edge of the code editor window and drag the AccountsProvider

component into the code editor. The default name AccountsProvider1 will appear in the

component tray at the bottom on the code editor window.

Now, click the Properties tab at the right edge of the code editor to open the Properties panel and

make sure that AccountsProvider1 is the specified component at the top of the Properties editor.

At the top of the Properties editor, select AccountsProvider1, then locate the Name property and

change its value to AccP. This shortens the name of the component object so that it requires less

typing when writing code. However, the characteristics of the component object and its

properties remain unchanged. Notice that the changed name now appears in the component tray

at the bottom of the code editor.

Next, click on the empty text box to the right of the property name Accounts, followed by

clicking on the icon at the top of the Properties editor. The word iAccounts1 should appear

next to Accounts in the Properties editor. In addition, you will see the following line was inserted

at the top of your EasyLanguage code.

Input: string iAccounts1("");

Between the quotes, type the number of one of your simulated accounts that will be used for the

AccP component object. When you request an account property for AccP this is the account

number that it will reference.

Input: string iAccounts1("SIM00000");

Let’s declare another input to specify the account P&L alert plot lines.

Input: PLAlert(500);

We’ll also declare a variable to hold the calculated account profit prior to plotting.

var: AccountPL(0);

Next, switch to the Event pane of the Properties editor by clicking the icon. You will see

Updated listed in the Event column with a blank Value. The Updated event will be triggered by the

AccountsProvider1 object whenever any value in your account has changed and will call an event

handler method in our EasyLanguage document. Simply double-click on the event name Updated

to create the new event handler method name.

An event handler method named AccP_Updated is automatically added to your document.

method void AccP_Updated(elsystem.Object sender,

elsystem.TimerElapsedEventArgs args)

begin

 { Insert your EasyLanguage statements below }

end;

EasyLanguage Objects - Home Study Course 35

Replace the auto generated comment after the begin statement with a call to a method named
PlotValues().

method void AccP_Updated(elsystem.Object sender,

 tsdata.trading.AccountUpdatedEventArgs args)

begin

 PlotValues();

end;

Now, create a method that will calculate and plot the account P&L every time an account updated

event occurs. It will only plot on the last bar on a chart and when the provider has collected data

for the specified account.

Method void PlotValues()

begin

 If LastBarOnChart and AccP.Count > 0 then begin

 AccountPL = AccP.Account[0].RTAccountNetWorth –

 AccP.Account[0].BDAccountNetWorth;

plot1(AccountPL,"AccountPL");

The next set of statements sets the color of the net worth difference plot to light grey if it is zero,

or to green or red based on a positive or negative account profit value.

 setplotcolor(1,LightGray);

 If AccountPL > 0 then

 setplotcolor(1,green);

 If AccountPL < 0 then

 setplotcolor(1,red);

 end;

end;

plot2(0,"Zero");

plot3(PLAlert);

plot4(-PLAlert);

Change the AccountPL plot to Histogram on the Chart Style tab of the document properties.

Verify the Indicator.

Note: The code for calculating the account P&L of a Futures or Forex Account are:
{ AccountPL = AccP.Account[0].RTAccountEquity -

AccP.Account[0].BDAccountEquity; }

When you apply the indictor to a chart, you should review the input settings and change the

account number and profit alert value as appropriate for the symbol on your chart. For example,

if you are charting an equities symbol, you would change the iAccounts1 input to your simulated

equities account and change the profit alert based on the current net worth of your account.

36 EasyLanguage Objects - Home Study Course

Filter Properties (TokenList)

In many cases, a property included in the Filters section of the Properties editor expects a string

containing one or more comma separated values, also known as a Token List.

For example, the PositionsProvider component includes three filter properties that are used to

narrow the selection of possible positions for the provider. Let’s say you wanted to gather

position information for a specific group of symbols. Set the Symbol property to gather any

positions in your account for MSFT, AAPL, and CSCO using string indicated:

Accounts
Symbols “msft,aapl,csco”
Types

The PositionsProvider object will return your positions for the three symbols specified but not for

any others in your account. In addition, the Types and Accounts properties were left blank to

indicate that any type of position in any account for the three specified symbols will return

results. However, you could just as easily add a list of specific accounts or position types and

your results would be limited to include just those items that match all filter conditions. For

example, the following filter settings would find just the long positions for the specified symbols

in either of the two accounts.

Accounts “SIM12345,SIM67890”
Symbols “msft,aapl,csco”
Types “long”

Instead of entering the name of a specific symbol, you could also type the reserved word symbol

(without quotes) for the Symbols filter to return a position for just the current symbol in a chart or

grid row, as below:

Symbols symbol

+= Addition Assignment Operator

Along with objects, some new assignment operators have been added to EasyLanguage that are

common to other object-oriented languages. One of these is an operator that adds the value of an

expression to a variable without needing to repeat the variable name on both sides of the

assignment statement. You can also say that that the expression ‘adds to’ the result.

For example, the following expression:

result += 1

is the same as writing

result = result + 1

except that result is only specified and evaluated once. Later, you will also see this operator used

when an event handler name is assigned to, or added to, an event property.

EasyLanguage Objects - Home Study Course 37

PositionsProvider

The PositionsProvider component creates an object that lets you reference positions values for a

specified symbol or list of symbols. You can also filter the results to include positions only for

certain accounts or position types. Using the filter criteria you specify for Symbols, Accounts,

and Types, the PositionsProvider builds a collection of positions that match your criteria and sets

the Count property to the number of elements in the collection. If you don’t specify any filter

criteria, the PositionsProvider will build a collection that includes positions for all symbols,

accounts, and types.

An Updated event associated with the PositionsProvider allows your code to be notified when a

value associated with any of the referenced positions changes. This is especially important when

a position changes for a symbol that is not in your chart or grid but that you want to know about

in your analysis technique or strategy.

In your code, you’ll typically use the Count property to determine if any positions were found by

the PositionsProvider before trying to access an indexed element from the position collection.

For example, the following code displays some of the various position properties for the first

position element in the Positions Provider collection:

 Plot1(PosProvider1.Position[0].OpenPL, "P/L");
 Plot2(PosProvider1.Position[0].Quantity, "PosSize");
 Plot3(PosProvider1.Position[0].AveragePrice, "AvgPx");
 Plot4(PosProvider1.Position[0].InitialMargin, "I Margin");
 Plot5(PosProvider1.Position[0].RequiredMargin, "R Margin");

38 EasyLanguage Objects - Home Study Course

EasyLanguage Objects - Home Study Course 39

 COURSE EXAMPLE #7

Objectives: (Position Value Indicator)

 Use a toolbox component to create an object that reads your position information.

 Use the Properties editor to initialize component properties.

 Plot the value of a position held for a plotted symbol.

Indicator: ‘$07_PosValue’

This indicator uses a PositionsProvider component to access information about your position

for a symbol in either RadarScreen or a chart. If you do not have a position, it will display

‘0’.

Workspace: $07_PosValue

Building the RadarScreen window:

Create: any interval

Insert Indicator: $07_PosValue

Components and Properties Editor Settings:

PosP:

 Name: PosP (changes component name)

 Symbol: symbol (under category Filters)

 Updated: PosP_Updated

40 EasyLanguage Objects - Home Study Course

Indicator Exercise #7: ‘$07_PosValue’

Create a new Indicator and name it: ‘#07_PosValue.

Click on Toolbox tab at the left edge of the code editor window and drag the PositionsProvider

component into the code editor. The default name PositionsProvider1 will appear in the

component tray at the bottom on the code editor window.

Now, click the Properties tab at the right edge of the code editor to open the Properties panel and

make sure that PositionsProvider1 is the specified component at the top of the Properties editor.

Change the Name property of the component to the shorter name PosP.

Under the Filters category, set type Symbol property to the reserved word symbol so that the

provider only returns positions for the current symbol. Leave the Accounts and Types properties

blank so that the provider looks for any position for the current symbol in all related accounts that

you might have, such as different margin or cash accounts.

You will now be able to use the PosP component as an object in your code to access position

values for the current symbol in a grid or chart.

Next, switch to the Event pane of the Properties editor by clicking the icon. You will see

Updated listed in the Event column with a blank Value. Double-click on the event name Updated

to create an event handler method in your EasyLanguage document and have the new method name

associated with the property.

A method named PosP_Updated has been added to your document. Remember, the parameters

within the parentheses of the event handler are auto generated and should not be removed or

changed by you.

method void PosP_Updated(elsystem.Object sender,

 tsdata.trading.PositionUpdatedEventArgs args)

begin

 PlotValues();

end;

Insert a call to PlotValues() between the begin and end statements of the PosP_Updated method.

This indicator requires no inputs or variables.

Next, create the PlotValues() method.

Method void PlotValues()

Begin

The first statement after begin is an if condition that reads the Count property of the component

to see if any positions were found for the current symbol. If no position exists for the current

symbol, the values for that symbol in a grid window will start out blank. If any positions do exist

for the current symbol, then the indicator will plot three position values.

if (PosP.Count > 0) then

 begin

 Plot1(PosP.Position[0].MarketValue, "Mkt Value");

 Plot2(PosP.Position[0].Quantity, "Qty");

 Plot3(PosP.Position[0].OpenPL, "P/L");

EasyLanguage Objects - Home Study Course 41

The color of the Open P/L plot is changed to Green for a positive value and Red for a negative

value.

 if PosP.Position[0].OpenPL >= 0 then

 SetPlotColor(3,Green)

 else

 SetPlotColor(3,Red);

 end

 else

 begin

If there is no position for the current symbol, the following code will display ‘0’ for the totals.

 Plot1(0, "Mkt Value");

 Plot2(0, "Qty");

 Plot3(0, "P/L");

 end;

end;

Verify the Indicator.

This indicator is designed for a grid analysis window, such as RadarScreen, and will show any

positions held for the symbols. However, it will also plot position values on a subgraph of a chart

where the indictor status line is most useful for reading the Quantity, Market Value, and P/L

numbers in that order.

42 EasyLanguage Objects - Home Study Course

Method Variables

In much the same way that you can declare variables in a function that can only be seen/used in

that function, you can also declare variables within a method that are local to the method and are

not accessible from the rest of the analysis technique. These local variables are created each time

the method runs and go away after the code in the method has been executed. Local variables

are useful when performing temporary calculations on values updated by event handlers or for

values such as counters and indexes that are only needed within a method. You can mix local

and analysis technique variables in a method and both can be included in calculations, however,

only the value of the standard analysis technique variable will be saved when the method is

exited.

A local variable declaration statement in a method is very similar to the standard variable

declaration statement you already know how to use at the beginning of an analysis technique or

strategy. However, there are two important differences: 1) a local variable statement must always

specify the variable type preceding the variable name (int, double, bool, or string), and 2) you

cannot specify an initial value for the local variable following its name. Also, because you can’t

rely on a local variable to have an initial value, it’s a good idea to assign the local variable a value

in the method code between the, begin and end, prior to using it in a calculation.

method void myMethod()
var: int myIndex, double priceTotal;
begin
 {EasyLanguage statements and calculations}
end;

Variable Types Review:
 Int = Integer – A positive or negative number without decimal values
 Double = Double Float – A positive or negative number with decimal values

Bool = Boolean – A TRUE or FALSE condition
String = Text – An alphanumeric series of characters

NumToStr(num,dec)

You can use the reserved word NumToStr to convert numeric property values to a string for

plotting. This is most useful when you want to control the number of decimal places in the text

version of the number.

For example, if you want to plot the LimitPrice property of the first order in an Order collection

and only display two decimal places you use the NumToStr reserved word, referencing the

numeric property value as the first argument and specifying the number of decimal places as the

second argument.

Plot1(numtostr(ordersprovider1.Order[0].LimitPrice,2),"Limit");

Be aware that converting a numeric value to a string in a grid application means that the resulting

value in that column will not sort numerically and that the decimal places settings will not apply.

EasyLanguage Objects - Home Study Course 43

 COURSE EXAMPLE #8

Objectives: (Position and Account Value Indicator)

 Combine different components

 Use toolbox components to create objects that read position and account information.

 Use the Properties editor to initialize component properties.

Indicator: ‘$08_PosValueAcct’

This indicator uses a PositionsProvider and Account Provider to calculate and displays the

market value of an equities position as a percent of the overall account. If you do not have a

position it will display ‘0’.

 Workspace: $08_PosValueAcct

Building the RadarScreen window:

Create: any interval

Note: List symbols for which you want to monitor positions

Insert Indicator: $08_PosValueAcct

Components and Properties Editor Settings:

PosP:

 Name: PosP (changes component name)

 Symbol: symbol (under category Filters)

 Updated: PosP_Updated

AccP:

 Name: AccP (changes component name)

44 EasyLanguage Objects - Home Study Course

Indicator Exercise #8: ‘$08_PosValueAcct’

For this example, we’ll start with the #07_PosValue indicator created in Course Example #7.

Save a copy of it as #08_PosValueAcct.

Since the PosP component was already a part of the previous indicator, you won’t need to add

that again. However, if you’re starting from scratch, you would drag the PositionsProvider

component from the Toolbox into the document and set the value for Symbol and for the Updated

event using the Property editor as specified under the Components and Properties Editor Settings

above.

Click on Toolbox tab at the left edge of the code editor window and drag the AccountsProvider

component into the code editor. The default name AccountsProvider1 will appear in the

component tray at the bottom on the code editor window.

Now, click the Properties tab at the right edge of the code editor to open the Properties panel and

make sure that AccountsProvider1 is the specified component at the top of the Properties editor.

Change the Name property of the component to the shorter name AccP.

As a reminder, the lines of code in grey are those copied from exercise #7.

method void PosP_Updated(elsystem.Object sender,

tsdata.trading.PositionUpdatedEventArgs args)

begin

 PlotValues();

end;

The first line of EasyLanguage code you’ll add will be variable declaration in-between the method

header and begin. You’ll declare two local variable declarations that are only seen within the

PlotValues method. Remember, local method variable declarations require that you specify a type

and do not accept a default value.

The first variable is used to calculate the percent of the Account net worth that the current symbol

position represents and the second will be used to hold the AccountID of the position.

Method void PlotValues()

var: double PcntOfAccount, string PosAccountID;

begin

 if (PosP.Count > 0) then

 begin

 Plot1(PosP.Position[0].MarketValue, "Mkt Value");

 Plot2(PosP.Position[0].Quantity, "Qty");

 Plot3(PosP.Position[0].OpenPL, "P/L");

 if PosP.Position[0].OpenPL>=0 then

 SetPlotColor(3,Green)

 else

 SetPlotColor(3,Red);

EasyLanguage Objects - Home Study Course 45

The following code first checks to see if any accounts are available by checking the Count property

of the AccP component and then calculates and displays the market value of the position as a

percent of the overall account. Notice that we get the account number (ID) for the current position

from the Position provider and then use that to reference the RT net worth value.

PosAccountID = PosP.Position[0].AccountID;

 If AccP.Count>0 then begin

 Value1 = PosP.Position[0].MarketValue;

 Value2 = AccP.Account[PosAccountID].RTAccountNetWorth;

 PcntOfAccount = Value1/Value2;

Plot4(numtostr(PcntOfAccount*100,3)+" %","% of Acct");

 end;

end

else

 begin

 Plot1(0, "Mkt Value");

 Plot2(0, "Qty");

 Plot3(0, "P/L");

 Plot4("0","% of Acct");

 end;

end;

Verify the Indicator.

This indicator is designed for a grid analysis window, such as RadarScreen, and will show any

positions held for symbols along with the percentage of the specified account that each position

represents based on the market value.

46 EasyLanguage Objects - Home Study Course

ToString()

The toString() method is a handy way to convert a value of an object property to a string. This is

often used so that you can display the numeric or date value of a property using a plot or print

statement without needing to worry about the property type.

For example, the following plot statement will generate a run-time error because Plot1 doesn’t

know how to display the referenced CurrentTime property that is DateTime object type:

Plot1(elsystem.datetime.CurrentTime);

However, adding .toString() to the end of the property reference will automatically convert

the CurrentTime property to a displayable string that can be plotted with a plot or print statement.

Plot1(elsystem.datetime.CurrentTime.toString());

OrdersProvider

The OrdersProvider allows access to both real-time and historical order information based on

user-specified filters from a list of specified TradeStation brokerage accounts. This information is

similar to that found on the Orders tab of the TradeManager. The Order class describes the

properties available for a specific order (see below).

You can also filter the results to include orders only for certain accounts, date ranges, order ID

numbers, and order states (e.g. received, filled, rejected, etc.). Using the filter criteria you specify

for Symbols, Accounts, From/To dates, and Order States, the OrdersProvider builds a collection

of Order objects that match your criteria and sets the Count property to the number of elements in

the collection. If you don’t specify any filter criteria, the OrdersProvider will build a collection

that includes orders for all symbols, accounts, ranges, and states.

An Updated event associated with the OrdersProvider allows your code to be notified when a

value associated with any of the referenced order changes. For example, any change in the status

of an order managed by a specific instance of your OrdersProvider will fire a notification event so

that you can plot the changed status. This is also useful when an order changes for a symbol that

is not in your chart or grid but that you want to know about in your analysis technique or strategy.

It’s always a good idea to use the Count property in your code to determine if any orders were

found by the OrdersProvider before trying to access an indexed element from the Order

collection.

For example, the following displays some of the various Orders properties for the first order

element in the Orders Provider collection:

 Plot1(OrdersProvider1.Order[0].AvgFilledPrice, "AvgFillPx");
 Plot2(OrdersProvider1.Order[0].FilledQuantity, "FillQTY");
 Plot3(OrdersProvider1.Order[0].State.ToString(), "State");
 Plot4(OrdersProvider1.Order[0].LimitPrice, "LimitPx");
 Plot5(OrdersProvider1.Order[0].Duration, "Duration");

Note: The orders collection is sorted chronologically, from 0 (newest) to oldest.

http://help.tradestation.com/09_00/tsdevhelp/mergedProjects/elobject/class/order_class.htm

EasyLanguage Objects - Home Study Course 47

 COURSE EXAMPLE #9

Objectives: (Order Status Indicator)

 Use a toolbox component to create an object that reads your order status information.

 Use the Properties editor to initialize component properties.

 Plot the quantity, order type, and status (state) of an order for a plotted symbol.

Indicator: ‘$09_OrderStatus’

This indicator uses an OrdersProvider component to access information about the status of

the last order submitted for a symbol in either a RadarScreen grid or a chart. If you do not

have any order activity for a symbol, the RadarScreen row is blank.

Workspace: $09_OrderStatus

Building the RadarScreen window:

Create: any interval

Insert Indicator: $09_OrderStatus

Components and Properties Editor Settings:

OrdersProvider1:

 Symbols: symbol (under category Filters)

 Updated: OrdersProvider1_Updated

48 EasyLanguage Objects - Home Study Course

Indicator Exercise #9: ‘$09_OrderStatus’

Create a new Indicator and name it: ‘#OrderStatus.

Click on Toolbox tab at the left edge of the code editor window and drag the OrdersProvider

component into the code editor. The default name OrdersProvider1 will appear in the component

tray at the bottom on the code editor window. Now, click the Properties tab at the right edge of

the code editor to open the Properties panel and make sure that OrdersProvider1 is the specified

component at the top of the Properties editor. Change the Name property of the component to the

shorter name OrdP

Under the Filters category, set type Symbol property to the reserved word symbol so that the

provider only returns order status information for the current symbol. Leave the Accounts, Status,

and Orders properties blank so that the provider looks for any order for the current symbol in all of

your accounts. You will now be able to use the OrdP component as an object in your code to access

position values for the current symbol in a grid or chart.

Next, switch to the Event pane of the property editor by clicking the icon. You will see Updated

listed in the Event column with a blank Value. Double-click on the event name Updated to create

an event handler method in your EasyLanguage document and have the new method name

associated with the property.

A method named OrdP_Updated has been added to your document. As previously mentioned, the

parameters within the parentheses of the event handler are auto-generated and should not be

removed or changed by you.

Insert a method call to PlotValues().

method void OrdP_Updated(elsystem.Object sender,

 tsdata.trading.OrderUpdatedEventArgs args)

begin

 PlotValues();

end;

Now, create the following that includes a method that will plot selected order status properties

from Order[0] that represents the first, and most recent, order in the collection. The .Count

property indicates the actual number of order status items for the current symbol, but, in this case,

we’re only interested in the first one. Also, notice the use of the .tostring() method after the

property name of several plots which causes those non-text values to display as a string on the

chart status line if inserted into charting.

Method void PlotValues() begin

 If OrdP.Count>0 then begin

 plot1(OrdP.Order[0].EnteredQuantity,"Quantity");

 plot2(OrdP.Order[0].type.tostring(),"Type");

 plot3(OrdP.Order[0].LimitPrice,"Limit Price");

 plot4(OrdP.Order[0].state.tostring(),"State");

 end;

end;

PlotValues();

Verify the Indicator.

This indicator is designed for a grid analysis window, such as RadarScreen, and will show any

orders placed for symbols.

EasyLanguage Objects - Home Study Course 49

LastBarOnChart

The LastBarOnChart function is used to determine if the current bar being evaluated is the last

bar on the chart. This is useful when writing conditions that need to create and send orders so that

they are placed only on real-time price conditions and not based on historical price conditions.

If LastBarOnChart and OrderCondition=true then
Orderticket1.send();

In this example, a true OrderCondition will only send an order on the current bar.

Analysis Technique – Initialized and Uninitialized Events

When an analysis technique or strategy is applied to your chart or gird application, it can

automatically trigger an Initialized event that will call a specified event handler method in your

EasyLanguage document when it first runs. In a similar manner, an Uninitialized event can be

triggered when an analysis technique ends, such as when it is removed from a chart or when

platform is shut down. This is very useful when you want to set up some conditions in your

analysis technique that will be executed one time when the technique first runs, just before the

rest of the analysis technique code runs on the bars of a chart or grid window, or as the last thing

when an analysis technique shuts down. You can add an Initialized or Uninitialized event to any

analysis technique by selecting Analysis Technique s from the drop-down list at the top of the

Properties Editor and then switching to the events tab by clicking on the icon. In the Event

column you will find a pair of events, Initialized and Uninitialized. Double-clicking on either

name will automatically create an event handler method in your EasyLanguage document named

AnalysisTechnique_Initialized or AnalysisTechnique_UnInitialized and will insert a reference to

that method in the Value column in the Properties Editor. Simply add your own EasyLanguage

statements to the new event method and they will be executed once every time the analysis

technique or strategy is loaded or unloaded as appropriate.

IntrabarPersist

IntrabarPersist is a variable declaration keyword that is used to create an EasyLanguage variable

or array that can store and update values tick by tick. This is especially useful when you want to

count intrabar ticks or to save the status of a condition that may change within a bar. By default,

the value of a variable is saved at the close of each bar.

Var: IntrabarPersist tickcount(0);
tickcount = tickcount + 1;

In this example, the variable tickcount is able to count the total number of ticks on each bar.

50 EasyLanguage Objects - Home Study Course

OrderTicket

The OrderTicket component generates an order ticket for a specified symbol and sends the order

directly to the market directly from your EasyLanguage analysis technique or strategy.

OrderTicket objects support most of the order parameters that are available when manually

placing an order from the TradeStation Order Bar. Just as with manual orders, the status of all

orders created from an OrderTicket will appear on the Orders tab of the TradeManager along with

other regular orders.

Setting up an OrderTicket component typically follows the same steps as with any of the previous

components. You first use the properties editor to fill in your order values. Some properties,

such as the Order type and Duration are set to default values. Others, such as the Symbol, Symbol

Type (asset type), Account, Quantity, and market Action (such as buy, sell, etc.) must be entered

by you to create a valid order. When all of the properties are set, you add a statement in your

EasyLanguage code to place the order using the component object’s Send() method, as follows:

OrderTicket1.Send() ;

In addition to using the properties editor, you can also set the OrderTicket properties directly in

your EasyLanguage code for those cases where you want to programmatically determine the

symbol, quantity, order action, etc. prior to sending the order. In either case, calling the Send()

method for the specified component submits the order.

OrderTicket1.Symbol = “XYZ”
OrderTicket1.Quantity = 200;
OrderTicket1.Action = tsdata.trading.orderaction.Buy;
OrderTicket1.Send() ;

Enable Order Placement Objects

To avoid accidental placement of orders from an analysis technique or strategy that contains an

OrderTicket, or other order component, you must specifically enable order placement for each

analysis technique or strategy that will be sending orders. This is done by going to the Format –

General tab of each technique or strategy and checking the Enable order placement objects

setting (midway down the tab) before orders can be generated from EasyLanguage.

Note: A run-time error will occur if this is not checked and the indicator attempts to send an

order.

EasyLanguage Objects - Home Study Course 51

 COURSE EXAMPLE #10

Objectives: (Market Order Indicator)

 Create an order ticket

 Send the order only once on the last bar

 Enable the order placement objects setting for the indicator

Indicator: ‘$10_MarketOrder’

This example uses an OrderTicket component to place a Buy market order based on a simple

low or high price target order rule. Once an order is sent, the order active status flag is set to

false. Reloading the indicator resets the Indicator to place another order.

WARNING: This indicator will generate a market order – make sure you are NOT logged

onto your real-money account. This should only be applied when logged into TradeStation

simulator.

Workspace: $10_MarketOrder

Building the Chart:

Create: 1-minute chart

Scaling: Same axis as underlying data

Insert Indicator: $10_MarketOrder

Components and Properties Editor Settings:

OrderTicket1:

 Symbol: symbol (type reserved word)

 Account: iAccounts1 (add default Account as an Input)

 Quantity: iQuantity1 (add desired Quantity as an Input)

 Action: Buy

 Type: Market

Analysis Technique:

 Initialized: AnalysisTechnique_Initialized

52 EasyLanguage Objects - Home Study Course

Indicator Exercise #10: ‘$10_MarketOrder’

Create a new Indicator and name it: ‘#10_MarketOrder.

Click on Toolbox tab at the left edge of the code editor window and drag the OrderTicket

component into the code editor. The default name OrderTicket1 will appear in the component

tray at the bottom on the code editor window.

Now, click the Properties tab at the right edge of the code editor to open the Properties panel and

make sure that OrderTicket 1 is the specified component at the top of the Properties editor.

Under the Filters category, set the Symbol property to the reserved word symbol so that the order

will be placed for the current symbol.

As we’ve done in a previous example, we’re going to make the account number an input. Next to

the property name Account, enter your simulated Forex account number. Then, click on the

icon at the top of the Properties editor to make it an input. The word iAccount1 should appear

next to Account in the Properties editor and you will see the following line inserted at the top of

your EasyLanguage code. This input will be the default account for the OrderTicket1 component.

For the next several examples, double check that you are using simulated account numbers when

generating orders from these examples.

Input: string iAccount1("SIM00000");

Still in the properties editor, enter the default Quantity of 100000 for this simulated Forex order.

As before, click the icon at the top of the Properties editor to make an input named iQuantity1

which will also be added to your code.

Input: int iQuantity1(100000);

While in the Properties editor, use the drop-down selector at the top of the editor to select Analysis

Technique. Switch to the Event pane of the property editor by clicking the icon. You will see

Initialized listed in the Event column with a blank Value. Double-click on the event name

Initialized to create an event handler method in your EasyLanguage document and have the new

method name associated with the property. We’ll be adding code to this method shortly.

method void AnalysisTechnique_Initialized(elsystem.Object sender,

 elsystem.InitializedEventArgs args)

begin

 { Insert your EasyLanguage statements below }

end;

You will now be able to use the OrderTicket1 component as an object in your code to send a

market order for the current symbol in a grid or chart.

In your EasyLanguage code, let’s add one more input that will represent whether order placement

is active when the indicator first runs.

Input: OrderActive(True);

Next we’ll declare variables for the high price target and the low price target that will be used in

the order rules that generate an order. Also, we’ll create an intrabarpersist variable that will allow

us to control when the order rules are active and allow an order to be sent only once.

EasyLanguage Objects - Home Study Course 53

Vars: double HiTarget(0), double LoTarget (0),

 intrabarpersist AllowTradeFlag(True);

In the AnalysisTechnique_Initialized method, we’ll first set the asset type of symbol for which

we’re placing the order to the asset type (Stock, Futures, Forex) of the current symbol using the

Category reserved word. Then we’ll set the initial value of the AllowTradeFlag variable to the

value of input OrderActive and later reset AllowTradeFlag so that an order only gets placed once.

method void AnalysisTechnique_Initialized(elsystem.Object sender,

 elsystem.InitializedEventArgs args)

begin

 OrderTicket1.SymbolType = Category;

 AllowTradeFlag = OrderActive;

end;

Create a method that will plot values for the indicator. Note that the plot statements in this

method are executed only when the PlotValues() method is called later in your code.

Method void PlotValues() begin

 Plot1(HiTarget,”High Target”);

 Plot2(LoTarget,"Low Target");

 Plot3(AllowTradeFlag.tostring(),"Active");

end;

In this example, the high and low price targets are calculated based on the highest or lowest price

over the past three bar intervals. This is so that our example gets order condition soon after

applying the indicator.

HiTarget = HighestFC(High, 3)[1];

LoTarget = LowestFC(Low, 3)[1];

Add the following two statements to plot values on each tick of a chart.

PlotValues();

With the next piece of code, the order condition will be executed when the current price hits the

high or low price target and when the AllowTradeFlag variable is True on the last bar of the

chart. The statement after begin uses the OrderTicket1.send() method to place the order. The

next statement resets the AllowTradeFlag variable to False so that no other orders are sent until

the chart is refreshed.

If ((Close <= LoTarget OR Close >= HiTarget) AND

 (LastBarOnChart AND AllowTradeFlag)) then begin

 OrderTicket1.send();

 AllowTradeFlag = False;

end;

Verify the Indicator.

Go to a Chart and insert the indicator.

From the chart, go to the Format #10_MarketOrder dialog and select the General tab. The

check box labeled Enable order placement objects needs to be checked before orders can be

generated from your EasyLanguage code. This setting only retains its setting as long as the

indicator is applied to the Chart. If you remove and reapply the indicator you will have to enable

the check box again.

54 EasyLanguage Objects - Home Study Course

Declaring an Object Variable

Up to this point, the objects we’ve been using were automatically created for us when we dragged

a component into your document. As we saw earlier, the EasyLanguage code used to create and

setup component objects has been attached to your analysis technique in a hidden code block

called Designer Generated Code that you can access from the View menu in code editor.

For example, let’s look the Designer Generate Code for the $10_MarketOrder example that uses

an OrderTicket component. Here are the first couple of lines:

{ Components declaration (Designer generated code) }

var: tsdata.trading.OrderTicket OrderTicket1(NULL);

This contains a declaration for a variable of type tsdata.trading.OrderTicket named OrderTicket1

with a default value of ‘NULL’. This name should look familiar since it’s the name of the

component object we setup in the properties editor and called to send the order. Each object

variable, whether created for you in the Designer Generated Code, or added by you directly in

your analysis technique code appear much the same with the object type followed by the object

name and an initial value of ‘NULL’:

In the next example, we’ll be tracking the status of an order using an Order object. The following

is a variable declaration of an object variable that will let you track an Order:

Var: tsdata.trading.Order myOrder(null);

Later in this course, you will declare other object variables that will allow you to create and

reference your own non-component objects.

Tracking the Order Status of an Order Ticket

To track the status of the order, you save the sent order instance to an Order object variable and

create an event handler method to automatically notify you of changes in the status of that

specific Order. The following describes the steps needed to track the status of a specific order that

you send with an OrderTicket:

{ declare an Object variable named myOrder to hold an instance of an Order object }

Var: tsdata.trading.Order myOrder(null);

{ method to handle Order update events }

Method void OrderStatusUpdate(elsystem.Object sender,
 tsdata.trading.OrderUpdatedEventArgs args)
begin
 Plot2(myOrder.State);
end;

{ copy the sent order to the object variable myOrder as an object instance }

myOrder = OrderTicket1.Send();

{ associate the event handler method with the myOrder object }

myOrder.Updated += OrderStatusUpdate;

EasyLanguage Objects - Home Study Course 55

BracketOrderTicket

The BracketOrderTicket component generates a bracket OCO order that consists of two of the

same order actions (buy, sell) for a specified symbol, and sends the combined OCO order to the

market directly from your EasyLanguage analysis technique. BracketOrderTicket objects support

most of the order parameters that are available when manually placing an order using the OCO

button of the TradeStation Order Bar.

Setting up a BracketOrderTicket component typically follows the same steps as with any of the

previous components. You first use the properties editor to fill in the basic order values, such as

the Symbol, Symbol Type (asset type), Account, Quantity, and Order Action (such as buy, sell,

etc.), that are required to create a valid order. In addition, you will need to specify the

TargetType and ProtectionType limit and stop prices.

When all of the properties are set, you add a reference to the BracketOrderTicket component in

your EasyLanguage code to place the order using the Send() method.

Just as with manual orders, the status of all orders created from a BracketOrderTicket will appear

on the Orders tab of the TradeManager along with other regular orders.

BracketOrderTicket1.Send() ;

Instead of using the properties editor, you can also set the BracketOrderTicket properties directly

in your EasyLanguage code for those cases where you want to programmatically determine the

symbol, quantity, order action, stop/limit prices, etc. prior to sending the order. In either case,

calling the Send() method for the specified component submits the order.

BracketOrderTicket 1.Symbol = “XYZ”
BracketOrderTicket 1.Quantity = 100;
BracketOrderTicket1.LimitPrice = myOrder.AvgFilledPrice + .05);
BracketOrderTicket1.StopPrice = myOrder.AvgFilledPrice - .05;
BracketOrderTicket 1.Action = tsdata.trading.orderaction.Sell;
BracketOrderTicket 1.Send() ;

56 EasyLanguage Objects - Home Study Course

EasyLanguage Objects - Home Study Course 57

 COURSE EXAMPLE #11

Objectives: (OSO Bracket Order Indicator)

 Create a bracket order ticket

 Associate and track an order ticket with an Order object

 Create an event handler method to track the Order status

 Use the print log to track the status of the market order until filled.

Indicator: ‘$11_OSOBracketOrder’

This indicator uses an OrderTicket and a BracketOrderTicket component to send a buy at

market order based on a specified price target and, when the order is filled, sends a Sell

bracket OCO order to set a profit target and protective stop target. The order status is

displayed in the print log.

Workspace: $11_OSOBracketOrder

Building the Chart window:

Create: 1-minute interval

Scaling: Same axis as underlying data

Insert Indicator: $11_OSOBracketOrder

Components and Properties Editor Settings:

OrderTicket1:

 Symbol: symbol (under category Filters)

 Accounts: iAccounts1 (add as an Input)

 Quantity: iQuantity1 (base quantity on Input)

 Action: Buy

BracketOrderTicket1:

 Symbol: symbol (under category Filters)

 Accounts: iAccounts1 (add as an Input)

 Quantity: iQuantity1 (base quantity on Input)

 Action: Sell

 TargetType: Limit

 ProtectionType: StopMarket

Analysis Technique:

 Initialized: AnalysisTechnique_Initialized

58 EasyLanguage Objects - Home Study Course

Indicator Exercise #11: ‘$11_OSOBracketOrder’

For this example, we’ll start with the #10_MarketOrder indicator created in Course Example #10.

Save a copy of it as #11_OSOBracketOrder.

Since the OrderTicket1 component was already a part of the indicator you previously created, you

won’t need to add that again. However, if you’re starting from scratch, you would drag the

OrderTicket component from the Toolbox into the document and set up the component Symbol,

Symbol Type, Accounts, Quantity, Action, and Type values using the Property editor as specified

under the Components and Properties Editor Settings above.

Click on Toolbox tab at the left edge of the code editor window and drag the BracketOrderTicket

component into the code editor. The default name BracketOrderTicket1 will appear in the

component tray at the bottom on the code editor window.

Now, click the Properties tab at the right edge of the code editor to open the Properties panel and

make sure that BracketOrderTicket1 is the specified component at the top of the Properties editor.

Under the Filters category, set the Symbol property to the reserved word symbol so that the bracket

order will be placed for the current symbol.

Click the empty text box next to the Account property, then click the down arrow to the right of

the box and select input iAccount1 from the drop-down list. This is the same simulated Forex

account number we are using for the market order ticket. Also, do the same with the Quantity

property by clicking the arrow to the right of the empty text box and selecting iQuantity.

Still in the Properties editor, set the Action property to Sell. Then set TargetType to Limit and

ProtectionType to StopMarket to indicate the type of orders we’ll placing above and below the

market when we place the bracket Sell order.

Back in our EasyLanguage code, after the previously declared inputs add a new input for the

bracket amount that will used to set the prices for the upper and lower bracket orders.

Input: int iQuantity1(100000);

Input: string iAccount1("SIM00000");

Input: OrderActive(TRUE);

Input: BracketAmt(.001);

Next, declare a new intrabarpersist variable that will tell us when a bracket order has been sent so

that the bracket order is only generated once.

Vars: double HiTarget(0), double LoTarget (0),

intrabarpersist AllowTradeFlag(True) ,
 intrabarpersist BracketSent(FALSE);

Also, declare an order object variable that will be used to reference the market order object that is

created when the market order is sent.

Var: tsdata.trading.Order MyOrder(null);

EasyLanguage Objects - Home Study Course 59

In the AnalysisTechnique_Initialized method, add a statement that sets the symbol type of

the bracket order to the asset type of the current symbol just like we did in the previous example for

the market order. Remember, the AnalysisTechnique_Initialized method is automatically created

when you double-click on the event name Initialized in the Properties editor for the Analysis

Technique (refer to example 10) .

method void AnalysisTechnique_Initialized(elsystem.Object sender,

 elsystem.InitializedEventArgs args)

begin

 OrderTicket1.SymbolType = Category;

 BracketOrderTicket1.SymbolType = Category;

 AllowTradeFlag = OrderActive;

end;

Now we’re going to create a new method that will allow us to track the status of the market order

and the bracket order. We’ll associate this method with an order status event a little later in this

example. Declare a local method variable named myStatus before the begin statement to hold

the status message string.

Method void OrderStatusUpdate(elsystem.Object sender,

 tsdata.trading.OrderUpdatedEventArgs args)

var: string myStatus;

begin

The next set of statements in the method will build the order status message string and display it

in the print log.

 myStatus = myOrder.State.tostring();

 myStatus = myStatus + " " + myOrder.OrderID;

 myStatus = myStatus + " - " + myOrder.Action.tostring();

myStatus = myStatus + " " + myOrder.FilledQuantity.tostring();

 myStatus = myStatus + " " + symbol;

 print(myStatus);

The following statements are executed only once after the market order is filled. The bracket

prices are set above and below the filled price of the market order, and then the bracket order is

sent. The BracketSent status variable is set to True so that the bracket order is only placed this

one time. Finally, the bracket order status message is displayed in the print log.

If BracketSent = False AND

 myOrder.State = tsdata.trading.orderstate.filled then begin

 BracketOrderTicket1.LimitPrice =

myOrder.AvgFilledPrice + BracketAmt;

 BracketOrderTicket1.StopPrice =

myOrder.AvgFilledPrice - BracketAmt;

BracketOrderTicket1.Quantity = iQuantity1;

 BracketOrderTicket1.Send();

 BracketSent = True;

print("Bracket order sent - ",

 BracketOrderTicket1.LimitPrice.tostring(),

 " ", BracketOrderTicket1.StopPrice.tostring());

 end;

Complete the method with an end statement.

end;

60 EasyLanguage Objects - Home Study Course

Here is the code from the previous example to plot the indicator values and send the initial market

order.

Method void PlotValues() begin

 Plot1(HiTarget, "High Target");

 plot2(LoTarget,"Low Target");

 plot3(AllowTradeFlag.tostring(),"Active");

end;

HiTarget = HighestFC(High, 3)[1];

LoTarget = LowestFC(Low, 3)[1];

PlotValues();

If ((Close <= LoTarget OR Close >= HiTarget) AND

 (LastBarOnChart AND AllowTradeFlag)) then begin

However, in this example we’re going to create an order object that will allow us to track the

order as it is sent, received, and filled. We’ll do this by assigning the order object returned by the

OrderTicket1.Send() method to the MyOrder object variable we declared earlier. Then,

we’ll associate the previously created OrderStatusUpdate event handler method with the

Updated event of the MyOrder object so that we can print the order status each time it changes

and send the bracket order when the market order fills.

 MyOrder = OrderTicket1.Send();
 MyOrder.Updated += OrderStatusUpdate;

 AllowTradeFlag = False;

end;

Verify the Indicator.

Go to a Chart and insert the indicator.

Go to the Format #11_OSOBracketOrder dialog and select the General tab. The check box

labeled Enable order placement objects needs to be checked before orders can be generated

from your EasyLanguage code. You can turn this on for all RadarScreen rows at once, or

individually for each selected row. This setting only retains its setting as long as the indicator is

applied to the RadarScreen window. If you remove and reapply the indicator you will have to

enable the check box again.

EasyLanguage Objects - Home Study Course 61

MarketDepthProvider

The MarketDepthProvider component creates an object that lets you reference updated

collections of market depth data including bid/ask quotes and bid/ask levels for a specified

symbol. This information is similar to that found on the TradeStation MarketDepth window.

Market Depth Collections:

 Bids & Asks.

 Bid Levels & Ask Levels.

 Participants (ECNs, Market Makers).

The Bids and Asks collection properties allow you to access the number of shares listed by

Participants (ECNs) at each price level. The BidLevels and AskLevels collection properties

allow you to access the combined data of all Participants at a particular price. And the

Participants properties collection allows you to access total for a unique Participant.

General properties let you control the number of levels on which to collect bid/ask quotes and

whether to include detailed ECN book data and Level II data in the provided data.

The Updated event can be used with the MarketDepthProvider to allow your code to be notified

when a value associated with any of the referenced market depth data changes.

In your code, you’ll typically use the Count property to determine the number of bid/ask quote

items or the depth of the bid/ask levels before trying to access an indexed element from these data

collections.

The Market Depth Provider stores information in five data collections:

Bids & Asks – Indexed by each row:

 (marketdepthprovide1.Bids[row].Price)

Bid Levels & Ask Levels – Indexed by each Price Level:

 (marketdepthprovide1.Asklevels[lvl].TotalSize)

Participants – Indexed by each Participant:

 (marketdepthprovide1.Participants[par].Bids.Count)

62 EasyLanguage Objects - Home Study Course

EasyLanguage Objects - Home Study Course 63

 COURSE EXAMPLE #12

Objectives: (Market Depth Indicator)

 Use a toolbox component to create an object that calculates and displays the total number

of shares or contracts over a number of Bid and Ask levels.

 Access Market Depth data by price level

 Loop through levels to total Bid size and Ask size

Indicator: ‘$12_TotalBidAskSize’

This RadarScreen indicator uses a MarketDepth component to display the total Bid size and total

Ask size for a specified number of Market Depth price levels.

Workspace: $12_MarketDepth

Building the RadarScreen window:

Create: 5- minute interval

Insert Indicator: $12_TotalBidAskSize

Components and Properties Editor Settings:

MDP:

 Name: MDP (changes component name)

 Symbol: symbol (set to symbol)

 MaximumLevelCount: iMaximumLevelCount1 (add as an int Input)

 Updated: MDP_Updated

64 EasyLanguage Objects - Home Study Course

Indicator Exercise #12: ‘$12_TotalBidAskSize’

Create a new Indicator and name it: ‘#12_TotalBidAskSize.

Click on Toolbox tab at the left edge of the code editor window and drag the OrdersProvider

component into the code editor. The default name MarketDepthProvide1 will appear in the

component tray at the bottom on the code editor window.

Now, click the Properties tab at the right edge of the code editor to open the Properties panel and

make sure that MarketDepthProvide1 is the specified component at the top of the Properties editor.

Change the Name property of the component to the shorter name MDP.

Under the Filters category, set the Symbol property to symbol so that the provider only returns

market depth information for the current symbol. Set the MaximumLevelCount property to an input

named iMaximumLevelCount1. The matching input declaration is added to your EasyLanguage

document.

Click the Events icon and double click on the Updated event to create an event method in your

document.

In your EasyLanguage document you will now have an input declaration and an event handler

method. Change the default input parameter to ‘3’. Add a call to PlotValues() in the handler

method.

Input: int iMaximumLevelCount1(3);

method void MDP_Updated(elsystem.Object sender,

 tsdata.marketdata.MarketDepthUpdatedEventArgs args)

begin

 PlotValues();

end;

Now, let’s create the PlotValues method which will include three local variables before the

begin statement. The first be used as a loop counter when totaling the size of the bid and ask

levels. The two local variables will accumulate the total market depth (size) of the ask and bid

levels that are being requested from the MarketDepthProvider component.

Method void PlotValues()

var: int level, int AskDepthTot, int BidDepthTot;

begin

EasyLanguage Objects - Home Study Course 65

The next set of statements will total the size of both the ask and bid levels from the component

object. First, set the ask and bid total variables to 0. Then, test to see if the provider contains

enough bid levels to calculate a total for the maximum number of levels you specified in your

iMaximumLevelCount1 input. If so, add the size of each bid level to the total in a loop. Create

an equivalent if and for loop for the ask levels.

 AskDepthTot = 0;

 BidDepthTot = 0;

 If MDP.bidlevels.count >= iMaximumLevelCount1 then

 For level = 0 to iMaximumLevelCount1 – 1 begin

 BidDepthTot += MDP.bidlevels[level].totalsize;

 End;

 If MDP.asklevels.count >= iMaximumLevelCount1 then

 For level = 0 to iMaximumLevelCount1 - 1 begin

 AskDepthTot += MDP.asklevels[level].totalsize;

 end;

Plot the totals and set the background color of the bid size plot to green if the bids are greater than

the asks, or set the background color of the ask size plot to red if the asks are greater than the

bids.

 Plot1(BidDepthTot,"Bid Size");

 Plot2(AskDepthTot,"Ask Size");

 If (BidDepthTot > AskDepthTot) then begin

 setplotbgcolor(1,darkgreen);

 setplotbgcolor(2,black);

 end

 Else begin

 setplotbgcolor(2,darkred);

 setplotbgcolor(1,black);

 end;

end;

Verify the Indicator.

Go to RadarScreen and insert the indicator.

66 EasyLanguage Objects - Home Study Course

QuotesProvider

The QuotesProvider component creates an object that lets you reference quote field (snapshot)

values for a specified symbol. Quote field values may update in realtime but no historical values

are available.

In the Properties editor, the Symbol property must specify the symbol for which you want quotes

and the Fields property must include a comma delimited list of field names to query. Both are

required filter properties. Only the requested quotes fields (e.g. "AskSize, DailyLimit") will be

available from a given copy of the QuotesProvider object.

You access a quote field value using the Quote["Name"] property of the QuotesProvider along

with the data value type (doublevalue, stringvalue, datevalue, etc) of the field requested, such as:.

plot1(QuotesProvider1.Quote["Ask"].doublevalue,"Ask");

Quote field prices are typically referenced as a DoubleValue, volume/trade size values as an

IntegerValue, Date and Time as a DateValue, and names/descriptions as a StringValue. The

QuoteFields class help topic lists the available quote field names along with their related data

value type. The value type for a quote field is also shown in the Example section of the EL

Dictionary Description pane for a specific field name.

An Updated event associated with the QuotesProvider allows your code to be notified when a

value associated with any of the referenced quote fields changes. This is especially important

when you are asking for quotes for a symbol that is not in your chart or grid but that you want to

know about in your analysis technique or strategy.

As with other providers, use the Count property to determine if any quotes were found by the

QuotesProvider before trying to access an indexed element from the collection.

EasyLanguage Objects - Home Study Course 67

 COURSE EXAMPLE #13

Objectives: (Quotes Indicator)

 Access Quote (snapshot) data using a Quotes Provider object

 Build a token list of Quote Fields to access

 Use a ‘value’ property to read and plot the appropriate value type for a quote field

Indicator: ‘$13_Quotes’

This indicator uses the Quotes Provider component to access Quote field data.

 Workspace: $13_Quotes

Building the RadarScreen window:

Create: 5-minute interval

Insert Indicator: $13_Quotes

Components and Properties Editor Settings:

QP:

 Name: QP (changes component name)

 Symbol: symbol (under category Filters)

 Fields: “last,tradevolume,tradetime”

 Updated: QP_Updated

68 EasyLanguage Objects - Home Study Course

Indicator Exercise #13: ‘$13_Quotes’

Create a new Indicator and name it: ‘#13_Quotes.

Click on Toolbox tab at the left edge of the code editor window and drag the QuotesProvider

component into the code editor. The default name QuotesProvider1 will appear in the component

tray at the bottom on the code editor window. Now, click the Properties tab at the right edge of

the code editor to open the Properties panel and make sure that QuotesProvider1 is the specified

component at the top of the Properties editor.

Change the Name property of the component to the shorter name QP.

Under the Filters category, set the Symbol property to the reserved word symbol so that the provider

only returns quote information for the current symbol in the chart or grid row. Set the Fields

property to the text string “last,tradevolume,tradetime” that is used to specify the Quote fields that

will be requested for the symbol.

A list of available Quote field names and data types is found under the QuoteFields class in the

dictionary and QuoteFields help topic in the EasyLanguage Object Reference. You will now be able

to use the QP component as an object in your code to access values for the current symbol in a grid

or chart.

Next, switch to the Event pane of the property editor by clicking the icon. You will see

Updated listed in the Event column with a blank Value. Double-click on the event name Updated

to create an event handler method in your EasyLanguage document and have the new method name

associated with the property.

A method named QP_Updated has been added to your document. The parameters within the

parentheses of the event handler are auto generated and should not be removed or changed by you.

In the event handler method, replace the auto generated comment after the begin statement with a

call to a method named PlotValues().

method void QA_Updated(elsystem.Object sender,

 tsdata.marketdata.QuoteUpdatedEventArgs args) begin

 PlotValues();

end;

Now, add the following statement in a method that will plot the specified quote fields from the

Quote collection. To read a specific quote value you will also need to add the appropriate property

type (i.e. doublevalue, integervalue, etc.) after the Quote[“fieldname”] as shown for each of the

three plots. Refer to the QuoteFields class in the dictionary or EasyLanguage Object Reference

help for a list of field names and data types. For example, when looking at the dictionary

description for the Last field name in QuoteFields class, refer to the Example at the bottom of the

description item to see a code snippet that shows the data type as .doublevalue.

Method void PlotValues() begin

 plot1(QP.Quote["Last"].doublevalue,"Last");

 plot2(QP.Quote["TradeVolume"].integervalue,"Volume");

 plot3(QP.Quote["TradeTime"].datevalue.tostring(),"Time");

end;

PlotValues();

Verify the Indicator.

Go to RadarScreen and insert the indicator.

EasyLanguage Objects - Home Study Course 69

FundamentalQuotesProvider

The FundamentalQuotesProvider component creates an object that lets you reference fundamental

quote field values for a specified symbol. Fundamental quote field values are typically not

updated in realtime and some may allow you to refer to values from previous reporting periods.

In the Properties editor, the Symbol property must specify the symbol for which you want to

retrieve fundamental quotes and the Fields property must include a comma delimited list of

fundamental field names to query. Both are required filter properties. Only the requested fields

(e.g. "sbbf,snpm,sgrp") will be available from a given copy of the FundamentalQuotesProvider

object.

You access a fundamental quote field value using the Quote["Name"] property of the

FundamentalQuotesProvider along with the data value type (doublevalue, stringvalue, datevalue,

etc.) of the field requested and number of reporting periods ago (use [0] for the most recent

period), such as:.

plot1(FundamentalQuotesProvider1.Quote["SBBF"].doublevalue[0],"EPS");

Note that the square-bracketed periods ago index is required after the value type for a fundamental
field, even if the specific field does not report historical values.

Prices are typically referenced as a DoubleValue, size values (including Volume and Trades) as

an IntegerValue, Date and Time as a DateValue, and names/descriptions as a StringValue. The

Fundamental QuoteFields class help topic lists the available fundamental quote field names along

with their related data value type. The value type for a fundamental quote field is also shown in

the Example section of the EL Dictionary Description pane for a specific field name.

An Updated event associated with the Fundamental QuotesProvider allows your code to be

notified when a value associated with any of the referenced quote fields changes. This is

especially important when you are asking for quotes for a symbol that is not in your chart or grid

but that you want to know about in your analysis technique or strategy.

You can also access Commitments of Traders for most Futures contracts using the Fundamental

QuotesProvider.

As with other providers, use the Count property to determine if any quotes were found by the

FundamentalQuotesProvider before trying to access an indexed element from the collection.

70 EasyLanguage Objects - Home Study Course

EasyLanguage Objects - Home Study Course 71

 COURSE EXAMPLE #14

Objectives: (Fundamental Quotes Indicator)

 Use a toolbox component to create an object that displays fundamental quote values for

the specified symbol.

 Access Historical Fundamental Data

 Use the Properties editor to specify fundamental fields to query.

Indicator: ‘$14_FundQuotes’

This indicator uses a FundamentalQuotesProvider component to access data from several

Fundamental Quote fields. It also calculates and plots a real-time P/E ratio for each symbol.

Workspace: $14_FundQuotes

Building the RadarScreen window:

Create: 30-minute interval

Insert Indicator: $14_FundQuotes

Components and Properties Editor Settings:

FQP:

 Name: FQP (changes component name)

 Symbol: symbol (under category Filters)

 Fields: "sbbf,yield,price2bk,f_lstupdat ”

 Updated: FQP_Updated

72 EasyLanguage Objects - Home Study Course

Indicator Exercise #14: ‘$14_FundQuotes’

Create a new Indicator and name it: ‘#14_FundQuotes.

Click on Toolbox tab at the left edge of the code editor window and drag the

FundamentalQuotesProvider component into the code editor. The default name

FundamentalQuotesP1 will appear in the component tray at the bottom on the code editor

window.

Now, click the Properties tab at the right edge of the code editor to open the Properties panel and

make sure that FundamentalQuotesP1 is the specified component at the top of the Properties editor.

Change the Name property of the component to the shorter name FQP.

Under the Filters category, set the Symbol property to the reserved word symbol so that the provider

only returns fundamental quotes for the current symbol in the chart or grid row. Set the Fields

property to the text string " sbbf,yield,price2bk,f_lstupdat" that specifies the Fundamental Quote

fields that will be requested for the symbol. A list of available fundamental quote field names and

data types is found under the FundamentalQuoteFields class in the dictionary and

FundamentalQuoteFields help topic in the EasyLanguage Object Reference.

You will now be able to use the FQP component as an object in your code to access values for the

current symbol in a grid or chart.

Next, switch to the Event pane of the property editor by clicking the icon. You will see

Updated listed in the Event column with a blank Value. Double-click on the event name Updated

to create an event handler method in your EasyLanguage document and have the new method name

associated with the property.

A method named FQP_Updated has been added to your document. The parameters within the

parentheses of the event handler are auto generated and you should not remove or change them.

In the event handler method, replace the auto generated comment after the begin statement with a

call to a method named PlotValues().

method void FQP_Updated(elsystem.Object sender,

 tsdata.marketdata.FundamentalQuoteUpdatedEventArgs args)

begin

 PlotValues();

end;

EasyLanguage Objects - Home Study Course 73

Now, add the following statements in a method that will plot the specified fundamental quote fields

from the component’s Quote collection. This time we’ll be referencing each element of the Quote

collection using a numeric index that matches the order they were listed in the Field filter property

set earlier, where ‘0’ is the first element, etc. As in the previous example, you need to add the

appropriate property value type for each Quote[n] item as shown for each of the five plots. Because

fundamental quotes can contain historical values for previous reporting periods, you also need to

specify which period to reference using square bracket ‘periods ago’ notation for each value. Refer

to the FundamentalQuoteFields class in the dictionary or EasyLanguage Object Reference help for

a list of field names and data types. For example, looking up “SBBF” (Basic EPS) in the help topic

shows a date type of double which means that you need to add the property DoubleValue[0]to

the end of the quote to be able to read the value for the most recent “SBBF” quote. If you fail to

specify the data type of the Quote or the ‘periods ago’ index you will likely get a run-time error.

Method void PlotValues()

begin

 If FQP.Count > 0 then begin

 if FQP.HasQuoteData(0) then

 Plot1(FQP.Quote[0].DoubleValue[0],"EPS");

Next we will access and plot the EPS of one period ago.

 if FQP.HasQuoteData(0) then

 Plot2(FQP.Quote[0].DoubleValue[1],"Prev EPS");

Then, we’ll plot the remaining fields for the current period.

 if FQP.HasQuoteData(1) then

 Plot4(FQP.Quote[1].DoubleValue[0],"DivYield %");

 if FQP.HasQuoteData(2) then

 Plot5(FQP.Quote[2].DoubleValue[0],"Px/Bk");

 if FQP.HasQuoteData(3) then

 Plot6(FQP.Quote[3].DateValue[0].tostring(),"UpDate");

 If Plot1 > Plot2 then

 SetPlotColor(1, Cyan)

 else

 SetPlotColor(1, Magenta);

 end;

end;

Finally, we will calculate and plot a real-time price to earnings ratio based on the current price.

Then, add another PlotValue call so that values also plot on a tick update.

if FQP.Count > 0 AND FQP.Quote[0].DoubleValue[0] > 0 then

 Plot3(Last / FQP.Quote[0].DoubleValue[0], "RT P/E");

PlotValues():

Verify the Indicator.

Go to RadarScreen and insert the indicator.

74 EasyLanguage Objects - Home Study Course

Workbook (Excel)

The Workbook component creates an object that lets you establish a connection between an

analysis technique and an external workbook in a Microsoft Excel
®
 spreadsheet.

In the Properties editor, the FileName filter property must specify the full path and file name of

an existing Excel spreadsheet file on your computer. Other filter properties are used to determine

additional settings for connection, such as whether the spreadsheet can be shared between other

analysis techniques or whether to save the data to the spreadsheet when done.

The Workbook component lets you refer to a specific tabbed sheet within your spreadsheet file

and then uses a Cells property of the referenced sheet to read or write data from a specified cell

column and row.

For example, the following statement writes the number 123.45 to a cell in the second column

and 4
th
 row of a tab (sheet) name named “Prices” in the spreadsheet referred to in the FileName

property:

Workbook1[“Prices”].Cells[2,4] = 123.45;

Likewise, this next statement reads a numeric value in the third column and fourth row of the

same “Prices” tab (sheet) and assigns it to Value1:

Value1 = Workbook1[“Prices”].CellsAsDouble[3,4];

We used the CellsAsDouble property to read from the cell to ensure that any numeric value in the

cell (or a blank cell) will read. However, if the cell contains a text string the statement will

generate an error because the data type of the cell doesn’t match.

Be aware that to use the Workbook component, you must have Microsoft Excel installed on your

computer and must have already created the spreadsheet file in the folder location referenced in

the FileName property.

Writing a Value to Excel

wkbk[“sheet name”].Cells[Col, Row] = 25.50;
wkbk[“AcctPL”].Cells[5,10] = 25.50;

Reading a Value to Excel

Value1 = wkbk[“sheet name”]. CellsAsDouble[Col, Row] ;
Value1 = wkbk[“AcctPL”]. CellsAsDouble[5,10] ;

Saving Spread Sheet Data:

If you modify an Excel Workbook with EasyLanguage and want to then save those changes when

you shut down your analysis technique, you can set an object Property to ‘SaveOnClose=TRUE’.

EasyLanguage Objects - Home Study Course 75

 COURSE EXAMPLE #15

Objectives: (Excel Indicator)

 Reference a pre-built Excel workbook

 Write updated values to an Excel spreadsheet

 Read calculated values from a spreadsheet

Indicator: ‘$15_Excel’

This indicator uses a Workbook component to communicate with a specified Excel

spreadsheet in either a RadarScreen or a chart window. NOTE: This indicator will only work

if you have a version of Microsoft Excel installed on your computer.

Workspace: $15_Excel

Building the Chart:

Create: 30 minute interval

Insert Indicator: $15_Excel

Components and Properties Editor Settings:

WkBk:

 Name: WkBk (changes component name)

 FileName: “c:\exceldemo.xls” (under category Filters)

AccP:

 Name: AccP (changes component name)

 Accounts: iAccount1

 Updated: AccP_Updated

PosP:

 Name: PosP (changes component name)

 Symbols: symbol

 Updated: PosP_Updated

76 EasyLanguage Objects - Home Study Course

Indicator Exercise #15: ‘$15_Excel’

Create a new Indicator and name it: ‘#15_Excel.

Click on Toolbox tab at the left edge of the code editor window and drag the following three

components into the code editor: Workbook, AccountsProvider, and PositionsProvider. The

default names Workbook1, AccountsProvider1, and PositionsProvider1 will appear in the

component tray at the bottom on the code editor window.

Now, click the Properties tab at the right edge of the code editor to open the Properties panel and

make sure that Workbook1 is the specified component at the top of the Properties editor. Change

the Name property of the component to the shorter name WkBk. Under the Filters category, set the

FileName property to c:\exceldemo.xls so that workbook knows what Excel file to communicate

with. You will now be able to use the WkBk component as an object in your code to access values

for the current symbol in a grid or chart.

Select AccountsProvider1 at the top of the Properties editor. Change the Name property of the

component to the shorter name AccP. Switch to the Event icon of the property editor and double-

click on Updated to create an AccP event handler method in your document. This method will be

called every time a change occurs in an Account value.

Select PositionsProvider1 at the top of the Properties editor. Change the Name property of the

component to the shorter name PosP. Switch to the Event icon of the property editor and double-

click on Updated to create a PosP event handler method in your document. This method will be

called every time a change occurs in one of your positions.

At the top of your document, create two variables. The first specifies the name of the tab you will

be referencing in the spreadsheet. The second will hold the value of the total position P/L as

calculated in the spreadsheet and read by your EasyLanguage code.

Var: WBTab("Demo"), TotalPL(0);

In the AccP event handler method we’ll add a set of statements that write several properties from

the first Account in the provider collection to the first four columns of row six in the spreadsheet.

As before, we first test to see if the AccP component contains any account data. Notice that each

WkBk reference includes the name of the spreadsheet tab (from the WBTab variable) that

contains the cells you want to write.

method void AccP_Updated(elsystem.Object sender,

 tsdata.trading.AccountUpdatedEventArgs args)

begin

 if (AccP.Count > 0) then

 begin

 WkBk[WBTab].Cells[1, 6] = AccP[0].AccountID;

 WkBk[WBTab].Cells[2, 6] = AccP[0].RTDayTradingBuyingPower;

 WkBk[WBTab].Cells[3, 6] = AccP[0].RTRealizedPL;

 WkBk[WBTab].Cells[4, 6] = AccP[0].RTUnrealizedPL;

 end;

end;

EasyLanguage Objects - Home Study Course 77

In the PosP event handler method we’ll add a set of statements that write several properties from

the each Position in the provider collection to the first four columns of rows 11 through 20 in the

spreadsheet.

method void PosP_Updated(elsystem.Object sender,

 tsdata.trading.PositionUpdatedEventArgs args)

var: int it;

begin

 for it = 0 to PosP.Count - 1

 begin

 WkBk[WBTab].Cells[1, 11 + it] = PosP[it].Symbol;

 WkBk[WBTab].Cells[2, 11 + it] = PosP[it].Quantity;

 WkBk[WBTab].Cells[3, 11 + it] = PosP[it].AveragePrice;

 WkBk[WBTab].Cells[4, 11 + it] = PosP[it].OpenPL;

 end;

This example assumes that we have no more than 10 positions. After writing out the existing

position data, a row of blank cells is added to make sure that no previous row displays when a

position is removed from the collection

 WkBk[WBTab].Cells[1, 11 + it] = "";

 WkBk[WBTab].Cells[2, 11 + it] = "";

 WkBk[WBTab].Cells[3, 11 + it] = "";

 WkBk[WBTab].Cells[4, 11 + it] = "";

The spreadsheet cell in column 4, row 21 contains a formula that sums up rows 11 – 20 in column

four. This calculated value is read from the spreadsheet and saved to the variable TotalPL and

plotted in realtime.

 TotalPL = WkBk[WBTab].CellsAsDouble[4, 21];

 If LastBarOnChart then

 plot1(TotalPL, "TotalP&L");

end;

Finally, a zero line is also displayed serve as a reference for the positive or negative P/L value.

Plot2(0);

This extra code at the end allows Plot1 to display when the market is closed.

If LastBarOnChart then begin

 TotalPL = WkBk[WBTab].CellsAsDouble[4, 21];

plot1(TotalPL, "TotalP&L");

end;

Verify the Indicator.

Go to a chart and insert the indicator.

78 EasyLanguage Objects - Home Study Course

Creating Non-Component Objects

Not all new objects are built using Toolbox components. You can add objects to your code by

declaring an object variable and assigning a new instance of the object to the variable. The type

(class) of the object variable and of the new object instance must be the same. The process of

creating a new instance of an object and assigning it to an object variable is also known as

instantiation.

Although not required, it is common to create new object instances when your EasyLanguage

code first runs by using an AnalysisTechnique_Initialized method that is triggered by the

Initialize event of the analysis technique (set in the Properties editor).

Examples of non-component objects include: Collections, Win Forms, and XML Databases.

New

The new reserved word is used in an assignment statement to create an instance (or copy) of an

object of a specified class (type) and to invoke the constructor of that class. The new word

appears to the right of the equals sign (=) and in front of the class type. The newly created object

is assigned to a previously declared object variable of the same class type.

For example, the following declares a variable for a vector object named vectorname and assigns

a new instance of an object of type Vector to the variable:

var: elsystem.collections.Vector vectorname(null);
vectorname = New elsystem.collections.Vector;

Note that the Vector class type used in the variable declaration and the creation of the new object

instance includes the full namespace reference to where the class is located in the dictionary.

Create()

The Create() method can also be used to create an instance of an object of a specified class (type)

and to invoke the constructor of that class. The Create() method is an alternative to the new

reserved word and is often used when a new object requires initialization parameters to be passed

as part of the Create() method.

For example, the following declares a variable for a global dictionary object named gdname and

assigns a new instance of an object of type GlobalDictionary to the variable. Note that this

Create() method accepts additional parameters that, in this case, specify that the GlobalDictionary

can be shared across analysis window types and has a unique shared name.

var: elsystem.collections.GlobalDictionary gdname(null);
gdname = elsystem.collections.GlobalDictionary.Create(true,"IDstring")

EasyLanguage Objects - Home Study Course 79

Vector Collection

A vector is used to save a set of values as indexed elements of a named collection. This is similar

to an EasyLanguage array; however, vectors have additional capabilities such as a variety of ways

for inserting values into the collection and the ability to store elements such as objects within the

collection.

Most of the objects we’ve been working with up to this point were created from components that

you dragged into your document from the Toolbox. To create a vector, or any non-component

object, you first need to declare a variable of the proper type and then assign a new instance of the

same type of object to the variable.

For example, here is a declaration statement for a variable named myValues that has been created

as an elsystem.collection.Vector type with an initial value of null. Note that object variables are

always declared with an initial value of null.

var: elsystem.collections.Vector myValues(null);

The next step is to assign a new instance (copy) of a Vector object to the variable. This can be

done anywhere in your code, but it most commonly done when your code first runs, as follows:

method void AnalysisTechnique_Initialized(elsystem.Object sender,
 elsystem.InitializedEventArgs args)
begin

myValues = New elsystem.collections.Vector;
end;

Once created, the length of the Vector can grow and shrink as you add or remove data at any

location. Vectors can be used with some core EL functions to average or sum up numeric values

in the collection. The first element index in a Vector collection is 0.

Adding a data element to a Vector:

Push_Back – Adds an element to the end of the Vector collection.

vectorname.Push_Back(25.50);

Insert – Adds an element at a specified location in the Vector collection, pushes the other

elements down one index.

vectorname.Insert(Index, 25.50);

cont.

80 EasyLanguage Objects - Home Study Course

Removing a data element from a Vector:

Pop_Back – Removes the element at the end of the Vector collection.

vectorname.Pop_Back();

Erase – Removes an element at a specified location in the Vector collection and moves the

other elements up one index.

vectorname.Erase(Index);
vectorname.Erase(iStart, iEnd);

Clear - Deletes all data elements from a Vector:

vectorname.Clear();

Accessing data elements from a Vector:

Value1 = vectorname[index];

Using Vectors in standard functions:

Value1 = Highest(vectorname, vectorname.count);

EasyLanguage Objects - Home Study Course 81

 COURSE EXAMPLE #16

Objectives: (Vector Indicator)

 Create a new vector object instance directly in your code

 Add values to a vector

 Access values in a vector

 Use the vector collection with a standard EL function.

Indicator: ‘$16_Vector’

This indicator uses a Vector collection to store the low bar price for a specified number of

key reversal patterns in the chart and then plots average of the lows as the results on a chart.

Workspace: $16_Vector

Building the Chart window:

Create: 30- minute interval

Insert Indicator: $16_Vector

Components and Properties Editor Settings:

 No components

Analysis Technique:

 Initialized: AnalysisTechnique_Initialized

Indicator Properties

Scaling: Same Axis as Underlying Data

Chart Style: Set first plot to type Point

82 EasyLanguage Objects - Home Study Course

Indicator Exercise #16: ‘$16_Vector’

Create a new Indicator and name it: ‘#16_Vector .

Up to this point, we’ve used components to create objects in the examples. For this example,

we’re going to use a non-component object called a Vector that is similar to an EasyLanguage

array, however, unlike an array the vector lets us add data to any element in the collection and

more easily manage its length.

First, let’s declare an input that will define the maximum number of elements that will be used in

our vector.

input: VectorMax(5);

Next we’re going to create an object variable that will be used to hold the Vector object. Object

variables are declared using the type of class the object is based on, in this case the object type is

specified using the full class name elsystem.collections.Vector. The name of the object variable

is AvgLow and all object variables are declared will an initial value of null.

var: elsystem.collections.Vector AvgLow(null);

A second variable will be a true-false value used to identify when a key reversal condition occurs.

var: KR(False);

Next, go the Properties editor, click the Events icon, and double-click Initialized to create an

event handler method that is executed only once when the indicator first runs.

Inside the AnalysisTechnique_Initialized method you’ll add a statement that creates a New

instance of a Vector object (again using the full class type name) and assigns it to the object

variable AvgLow. If you go back and look at the designer code in the previous examples that

included component created objects you’ll see a similar assignment statement for each component

object you were using.

method void AnalysisTechnique_Initialized(elsystem.Object sender,

 elsystem.InitializedEventArgs args)

begin

 AvgLow = New elsystem.collections.Vector ;

end;

The following statement sets KR to True whenever a key reversal pattern is found where the Low

of the current bar is lower than the three previous bars and the Close of the current bar is greater

than the Close of 1 bar ago. If the pattern was not found, KR is set to False.

KR = (Low < Lowest(Low, 3)[1] and Close > Close[1]);

EasyLanguage Objects - Home Study Course 83

If a key reversal pattern was found, a new value is added to the vector object AvgLow using the

Insert() method. In this case, it adds the Low price of the current bar as the 0
th
 element of the

vector. The important thing to note here is that the most recent value is always added as the 0
th

element of the vector and the previous values in the vector are automatically moved down one

element position. Once the number of items in the vector exceeds the specified maximum, the

Pop_Back() method is used to remove the last item so that it always has VectorMax or less items

in the collection. Once the vector has been updated the current bar Low is plotted. You’ll need

to right-click in the document, go the Chart Style tab, and change the Type value for “KR BAR”

to a Point with increased Weight so that a thick dot appears on the chart wherever a key reversal

is found.

if KR then begin

 AvgLow.insert(0,Low);

 If AvgLow.Count > VectorMax then

 AvgLow.pop_back();

 Plot1(Low, "KR BAR");
end;

Finally, if any items exist in the vector, we’ll plot the average of the previous Lows in the vector

as a line that represents the recommended stop exit price for an order placed based on the current

key reversal.

If AvgLow.Count = VectorMax then

 plot2(Average(AvgLow,VectorMax),"KR Avg Low");

Right-click in the document to change the plot type for KR BAR to be a point.

Verify the Indicator.

Go to a chart and insert the indicator.

84 EasyLanguage Objects - Home Study Course

Global Dictionary Collection

A global dictionary is used to save values (or objects) that can be shared between analysis

techniques across windows. Values are added to the GlobalDictionary using a key/value pair

where the key is the name of the item in the dictionary (such as “mySymbol”) and the value is any

number, string, boolean, or object that can be saved and retrieved using the key name.

Most of the objects we’ve been working with up to this point were created from components that

you dragged into your document from the Toolbox. To create a non-component object, you first

need to declare a variable of the proper type and then assign a new instance of the same type of

object to the variable.

For example, here is a declaration statement for a variable named myGD that has been created as

an elsystem.collection.GlobalDictionary type with an initial value of null.

var: elsystem.collections.GlobalDictionary myGD(null);

Next, a new instance of a GlobalDictionary object is created and assigned to the myGD variable.

myGD = elsystem.collections.GlobalDictionary.Create();

Using the Create() method with no parameters creates a default (unnamed) GlobalDictionary that

is shared by analysis techniques running in the same window type (Chart, RS, etc.). Each

analysis technique that reads or write to this default global dictionary needs an object variable

that is assigned an instance of the GlobalDictionary using the same blank Create() method.

As an alternative, a two parameter Create(shareType,shareName) method can be used to create a

GlobalDictionary object that can be shared across window types (between a chart and

RadarScreen for instance) and uses a specific name to avoid conflicts that might occur using the

default dictionary. Each analysis technique that reads or write to this named global dictionary

needs an object instance of the GlobalDictionary made with a Create (shared,name) method

having the same true/false and share name parameters. The following statement creates an

instance of a GlobalDictionary that works across window types using a shared name.

myGD = elsystem.collections.GlobalDictionary.Create(TRUE, “GD_sharedname");

Add a value to the Global Dictionary if the key doesn’t already exist.

If myGD.Contains(“keyname”) = false then
myGD.Add("keyname", initialvalue);

Once a key has been added to the dictionary, the value associated with the key can be changed or

read back using the Items[“keyname”] property. Please note that when reading a dictionary value

the Items[] value needs to be assigned to a variable using the proper data type.

Change a value associated with an existing Global Dictionary key

If myGD.Contains(“keyname”) then
myGD.Items[“keyname“] = newvalue;

Read a value associated with an existing Global Dictionary key

If myGD.Contains(“keyname") then
 value1 = myGD.Items[“keyname”] astype type;

EasyLanguage Objects - Home Study Course 85

 COURSE EXAMPLE #17

Objectives: (GDWrite)

 Create a Global Dictionary object to share values between any type of analysis window

 Give the Global Dictionary a specific shared name

 Write values to the global dictionary

Indicator: ‘$17_GDWrite’

This example uses a Global Dictionary object to write information into a global dictionary

that can be accessed from another analysis technique also using the Global Dictionary.

Workspace: $17_GDWrite

Building the Chart window:

Create: Daily interval

Insert Indicator: $17_GDWrite

Components and Properties Editor Settings:

 No components

Analysis Technique:

 Initialized: AnalysisTechnique_Initialized

86 EasyLanguage Objects - Home Study Course

Indicator Exercise #17: ‘$17_GDWrite’

Create a new Indicator and name it: ‘#17_GDWrite.

In this example, we’re going to use a non-component object called a Global Dictionary collection

and write a pair of values to the global dictionary that can be read by another analysis technique

that reads the values from the same global dictionary.

First, let’s declare an input that defines the look back period that will be used when calculating

the percent change of the benchmark symbol’s closing price.

Input: int LookBack(20);

Then, declare an object variable that will be used to reference an instance of the global dictionary

and another variable for the calculated benchmark performance value.

Var: elsystem.collections.GlobalDictionary GD(null),

 double BenchPerf(0);

Next, go the Properties editor, select Analysis Technique, click the Events icon, and double-click

Initialized to create an event handler method that is executed only once when the analysis

technique first runs.

Inside the AnalysisTechnique_Initialized method you’ll add a statement that includes a two

parameter GlobalDictionary Create method and assigns the new “myAll” instance to the object

variable GD.

method void AnalysisTechnique_Initialized(elsystem.Object sender,

 elsystem.InitializedEventArgs args)

begin

GD = elsystem.collections.GlobalDictionary.Create(true,"myAll");

The next set of statements looks to see if the dictionary already contains an item name

“TopSymbol” (which it may if another GDWrite indicator is running elsewhere). If that item

doesn’t exist, we’ll add it and the related “TopValue” item to the dictionary. Remember, because

these EasyLanguage statements are in the AnalysisTechnique_Initialized method, they are

executed only once when the analysis technique loads.

 If GD.Contains("TopSymbol") = false then begin

 GD.Add("TopSymbol","");

 GD.Add("TopValue",BenchPerf);

 end;

end;

EasyLanguage Objects - Home Study Course 87

Once the chart has loaded and reached the last bar, the following statements are executed. They

calculate the benchmark symbol’s performance based on the percent change of the Close over the

look back period, assign the bench performance value and symbol name to the previously created

Global Dictionary items, and plot the just saved benchmark value from the dictionary. A second

plot displays a zero reference line. Because this code is part of the main body of the indicator, the

performance value is calculated and written to the global dictionary on every tick.

If LastBarOnChart then begin

 BenchPerf = PercentChange(Close, LookBack) * 100;

 GD.Items["TopValue"] = BenchPerf;

 GD.Items["TopSymbol"] = symbol;

 plot1(GD.Items["TopValue"] astype double,"Bench Perf");

end;

Plot2(0);

Verify the Indicator.

Go to a 30-minute chart and insert the indicator.

88 EasyLanguage Objects - Home Study Course

EasyLanguage Objects - Home Study Course 89

 COURSE EXAMPLE #18

Objectives: (GDRead Indicator)

 Reference a Global Dictionary object from another analysis technique

 Read values from a specific global dictionary as they are updated

Indicator: ‘$18_GDRead’

This indicator uses a Global Dictionary object to read information from a global dictionary

into an analysis technique whenever the global dictionary information changes.

Workspace: $18_GDRead

Building the RadarScreen window:

Create: Daily interval for each symbol

Insert Indicator: $18_GDRead

Components and Properties Editor Settings:

 No components

Analysis Technique:

 Initialized: AnalysisTechnique_Initialized

90 EasyLanguage Objects - Home Study Course

Indicator Exercise #18: ‘$18_GDRead’

Create a new Indicator and name it: ‘#18_GDRead.

In this example, we’re going to create a reference to the same GlobalDictionary object created in

the previous exercise, only this time we’re going to read the benchmark performance value every

time it is changed by the other analysis technique.

To save a little typing, you may want to copy the input and variable declarations from the

previous example and then add variables to save two other performance values along with the

benchmark symbol name from the dictionary.

Input: int LookBack(20);

Var: elsystem.collections.GlobalDictionary GD(null),

 double BenchPerf(0), SymRowPerf(0), RelPerf(0),

 string BenchSymbol("");

As before, go the properties editor, select Analysis Technique, click the Events icon, and double-

click Initialized to create an event handler method that is executed only once when the analysis

technique first runs.

Inside the AnalysisTechnique_Initialized method we’ll add the same two parameters to the

GlobalDictionary, and then create a method assignment that refers to the “myAll” shared

dictionary. Then, associate two of the global dictionary events with a handler method that will be

called whenever the global dictionary item is added or changes in value.

method void AnalysisTechnique_Initialized(elsystem.Object sender,

 elsystem.InitializedEventArgs args)

begin

 GD = elsystem.collections.GlobalDictionary.Create(true,"myAll");

 GD.ItemAdded += Global_ItemChanged;

GD.ItemChanged += Global_ItemChanged;

end;

The following method must be manually typed since there is no automatic mechanism for

creating handler methods for non-component objects. It will call the PlotValues method to

display for the global dictionary items whenever they change.

method void Global_ItemChanged(elsystem.Object sender,

 elsystem.collections.itemprocessedEventArgs args)

begin

 PlotValues();

end;

In the PlotValues() method you’ll add statements that get the benchmark symbol name and

performance value from the dictionary if they exist (if they don’t exist, that means that the

GD_Write indicator hasn’t run.)

Method void PlotValues()

begin

 If GD.Contains("TopValue")=true then begin

 BenchPerf = GD.Items["TopValue"] astype double;

 BenchSymbol = GD.Items["TopSymbol"] astype string;

 end;

EasyLanguage Objects - Home Study Course 91

The next statement calculates the performance of the symbol in the current row of RadarScreen

based on the Closing price over the look back period. It is followed by a second statement that

calculates the difference in performance between the current symbol and benchmark symbol.

 SymRowPerf = PercentChange(Close, LookBack) * 100;

 RelPerf = SymRowPerf - BenchPerf;

The benchmark symbol name and related performance values are plotted.

 Plot1(BenchSymbol, "Bench Sym");

 Plot2(BenchPerf, "Bench Perf");

 Plot3(SymRowPerf, "SymRow Perf");

 Plot4(RelPerf, "Rel Perf");

end;

Since performance values are based on either a change in the global dictionary benchmark value

or an update from the current row symbol value, an additional call to the PlotValues() method

appears in the main body of your code.

PlotValues();

Verify the Indicator.

Go to RadarScreen and insert the indicator. Add a group of symbols to RadarScreen and change

the symbol intervals to 30 minutes to match the benchmark interval from the chart. Set the

Symbol Link of the chart and the RadarScreen window to the same color so that clicking on a

RadarScreen symbol changes the benchmark symbol in the chart using TradeStation’s symbol

linking feature.

92 EasyLanguage Objects - Home Study Course

Using – (Reserved Word)

The using reserved word allows you to reference object class names in your EasyLanguage code

without needing to type the full namespace portion of the name every time.

For example, when creating forms you need to declare an object type for each variable for each

control, such as:

vars: elsystem.windows.forms.Form form1(Null),
 elsystem.windows.forms.Button button1(Null),
 elsystem.windows.forms.TextBox textbox1(Null);

The ‘using’ reserved word lets you indicate that the namespace portion of the object type can be

assumed so that only the object type itself needs to be specified in each declaration, as follows:

using elsystem.windows.forms;

vars: Form form1(Null),
 Button button1(Null),
 TextBox textbox1(Null);

EasyLanguage Objects - Home Study Course 93

Form Controls

The EasyLanguage Forms classes allow you to create objects that produce freestanding windows

as part of an analysis technique or strategy. Form objects consist of container Controls (such as

forms, groups, or panels) that are used to group and display basic Controls (such as buttons, text

areas, up/count numeric spinners, combo boxes, and more).

 Form windows are created and activated within an analysis technique or strategy.

 Form controls allow you to create interactions with TradeStation analysis windows.

 The properties for each container and control object are accessed through EasyLanguage.

Each of the various form controls can be set up in the initialized method by setting object

properties for size, location, labels, and certain functionality.

Form Containers

 Form - A window in which to place the form's related controls and containers.

 Panel - An area within a form to visually organize a set of controls.

 Group Box - An area used to visually group a set of form controls.

Form Controls

 Button - A push-button that generates to a user click event and calls a handler method.

 Checkbox - A small box that can be checked or unchecked by the user. A user click

event calls a method used to review the checked or unchecked state.

 Combo Box - Presents a list of items to a user from a drop-down list and triggers an event

when a selection is made that can call a handler method.

 Label - Displays non-editable text on form. Labels can be used to provide descriptions or

identify surrounding controls.

 List View - Displays a collection of text items in a multi-column format. An event is

triggered when a list view item selection is made that can call a handler method.

 Numeric Up Down - Displays a numeric value that users can quickly increment or

decrement at a predefined step value using up-down arrows. Each value change event

calls an event method.

 Radio Button - Typically placed in groups of two or more, allows users to select from a

group of mutually exclusive options. Radio buttons generate a user click event that can

call a method used to review the button state.

 Text Box - Displays text that can be edited by a user.

94 EasyLanguage Objects - Home Study Course

EasyLanguage Objects - Home Study Course 95

 COURSE EXAMPLE #19

Objectives: (Forms Indicator)

 Create a set of form control objects that display in a pop-up window

 Assign events to certain controls that are handled by your code.

Indicator: ‘$19_Simple_Form

This example shows how to use a button click to change some text in a form.

Workspace: $19_Simple Form

Building the Chart window:

Create: 30 minute interval

Insert Indicator: $19_Simple Form

Components and Properties Editor Settings:

 No components

Analysis Technique:

 Initialized: AnalysisTechnique_Initialized

96 EasyLanguage Objects - Home Study Course

Indicator Exercise #19: ‘$19_Simple Form

Create a new Indicator and name it: ‘#19_SimpleForm.

To eliminate the need to enter the full namespace path for each object type reference, we’ll

include a using statement for the assumed namespace. In this case, since we’ll be working with

Forms objects, all of the objects we expect to reference will be in the elsystem.window.forms

namespace portion of the EasyLanguage object hierarchy.

using elsystem.windows.forms;

Next, we’ll declare three object variables to hold each of the three form controls we’ll be using in

this example. These include a form container that will contain a button control and a text control.

vars: Form form1(Null),

 Button button1(Null),

 TextBox textbox1(Null);

An analysis technique initialized method is created that will contain statements that are executed

when the analysis technique first runs. Use the Properties editor to access the events for the

Analysis Technique and double-click the Initialized event to create the method.

method void AnalysisTechnique_Initialized(elsystem.Object sender,

 elsystem.InitializedEventArgs args)

begin

After the begin statement, we will create an instance of each control and assign it to the

respective object variable. For most form controls, the create method is used to specify the initial

text displayed by the control along with the width and height of the control in screen pixels. For

example, the form1 control (the window in which the controls will appear) will be 300 pixels

wide and 120 pixels high with the words “Simple Form’ displayed on the title bar of the window.

 form1 = form.create("Simple Form", 300, 120);

button1 = button.create("Press the Button", 100, 25);

textbox1 = textbox.create("Text before pressing button",200,25);

After specifying the size and initial text of each control, we’ll need to specify the location of the

control within the form container. In this case, the upper left corner of the button will be indented

30 pixels from the left edge of the form and 10 pixels from the top of the form. Likewise, the

textbox control will be indented 30 pixels and placed 40 pixels down from the top of the form.

 button1.Location(30,10);

 textbox1.Location(30, 40);

Many controls support events that will notify you when certain things happen to a control, such as

clicking on the control or an element of a control. Here, we’ll set an event handler method named

OnButtonClick to respond to the button1 Click event. The important thing is that every time

the button is pressed, the code in the associated method will be executed.

 button1.Click += OnButtonClick;

EasyLanguage Objects - Home Study Course 97

Once the controls are created, positioned, and set to respond to events, we’ll add them to the form

container and then show the form window with the controls appearing in the form at the locations

specified above.

 form1.AddControl(button1);
 form1.AddControl(textbox1);

 form1.Show();
end;

Now, we’ll create the event method that will be called whenever the button in the form is clicked.

The method parameters are typically the same for any form control event handler so you can use

this as a model for other form control event handlers.

method void OnButtonClick(elsystem.Object sender,

 elsystem.EventArgs args)

begin

The next statements will change the text in the textbox and button as shown when the button is

pressed. Note how we are using the button text to determine the state, and then setting the new

button text for the next button click event.

 If button1.Text = "Press the Button" then begin

 textbox1.Text = "Text after the button has been Pressed";

 button1.Text = "Button Pressed";

 End else begin

 textbox1.Text = "You Pressed it Again";

 button1.Text = "Press the Button";

end;

end;

Verify the Indicator, then go to a chart and insert the indicator.

98 EasyLanguage Objects - Home Study Course

EasyLanguage Objects - Home Study Course 99

 COURSE EXAMPLE #20

Objectives: (Forms Indicator)

 Create a set of form control objects that display as a pop-up window

 Assign events to certain controls that manipulate a pair of trendlines

Indicator: ‘$20_TrendLine S&R’

This indicator uses form controls in a custom pop-up window to change the location and style

of a pair of Trendlines on a chart.

Workspace: $20_TrendLine S&R

Building the Chart window:

Create: 30 minute interval

Insert Indicator: $20_TrendLine S&R

Components and Properties Editor Settings:

 No components

No properties to set

Analysis Technique:

 Initialized: AnalysisTechnique_Initialized

100 EasyLanguage Objects - Home Study Course

Indicator Exercise #20: ‘$20_TrendLine S&R’

Create a new Indicator and name it: ‘#20_TrendLineS&R.

This example is much longer and appears to be more complex than the simple button and textbox

exercise we just did, but the main difference is the number of form objects created and the various

event handler methods that respond to form control events.

Regardless of the number of controls, there are seven basic steps involved in creating a form

window (container) and using controls (buttons, labels, combo boxes, etc.) within it. These steps

consist of 1) declaring an object variable for each control, 2) creating a new instance of each

control (including the initial text and its size, 3) setting the location of controls within a form

container, 4) setting other parameters for the controls, 5) associating event methods to the

controls, 6) adding controls to their container, and 7) displaying the form window.

As before, we’ll include a using statement for each assumed namespace to minimize retyping the

full namespace portion of each object type when declaring object variables or creating object

instances.

Using elsystem.windows.forms;

Using elsystem.drawing;

First, we’ll declare a set of object variables that will be used to reference the form control objects

and their properties. This is Step 1 of the seven basic steps for creating a form.

vars: Form form1(Null),

 Panel panel1(Null),

 Button button1(Null),

 NumericUpDown spinner1(Null),

 Label label1(Null),

 Label label2(Null),

 Label label3(Null),

 Label label4(Null),

 Label label5(Null),

 Label label6(Null),

 RadioButton radio1 (Null),

 RadioButton radio2 (Null),

 RadioButton radio3 (Null),

 CheckBox checkbox1(Null),

 CheckBox checkbox2(Null),

 ComboBox combobox1(Null);

Next, we’ll declare two numeric variables to keep track of the high and low position of the

trendline that we’ll be adding to the chart.

vars: TL_High(0.0),TL_Low(0.0);

An analysis technique initialized method is created that will contain statements that are executed

the when the analysis technique first runs. Since we only need to execute the form creation and

initialization statements once, this is an ideal place for this code. Use the Properties editor to

access the events for the Analysis Technique and double-click the Initialized event to create the

method.

method void AnalysisTechnique_Initialized(elsystem.Object sender,

 elsystem.InitializedEventArgs args)

begin

EasyLanguage Objects - Home Study Course 101

In the first set of statements in the method, we’ll create and assign an instance of each form

control object, including any initial text along with the width and height of the control, to the

respective object variable for the control. This is Step 2 of the seven basic steps for creating a

form.

 form1 = Form.create("TrendLine Support & Resistance",330,200);

 panel1 = Panel.create(295,130);

 button1 = Button.create("Reset All", 60, 25);

 spinner1 = NumericUpDown.create(60,25);

 label1 = Label.create(symbol,80,18);

 label2 = Label.create("Increment +/-",80,18);

 label3 = Label.create("Thickness:",60,18);

 label4 = Label.create("R: 123.45",60,18);

 label5 = Label.create("S: 123.45",60,18);

 label6 = Label.create("Brightness",60,18);

 radio1 = RadioButton.create("Thin",45,25);

 radio2 = RadioButton.create("Medium",65,25);

 radio3 = RadioButton.create("Heavy",65,25);

 checkbox1 = CheckBox.create("Extend to Left",100,18);

 checkbox2 = CheckBox.create("Extend to Right",100,18);

 combobox1 = ComboBox.create("",100,22);

Then, we’ll set the relative location of that each control by specifying the x,y offset of the upper

left corner of the control within its container. This is Step 3 of the seven basic steps for creating a

form.

 panel1.Location(10,25);

 button1.Location(220,95);

 spinner1.Location(90,10);

 label1.Location(20,5);

 label2.Location(20,15);

 label3.Location(20,39);

 label4.Location(160,15);

 label5.Location(230,15);

 label6.Location(20,100);

 radio1.Location(90,35);

 radio2.Location(145,35);

 radio3.Location(215,35);

 checkbox1.Location(20,65);

 checkbox2.Location(130,65);

 combobox1.Location(90,98);

102 EasyLanguage Objects - Home Study Course

The following statements set additional properties for controls, such as their initial displayed

values or appearance. This is Step 4 of the seven basic steps for creating a form. Refer to the

EasyLanguage Dictionary or Help topics for more information about the properties that are

available for a specific control.

 label4.ForeColor = Color.Red;

 label5.ForeColor = Color.Blue;

 panel1.BorderStyle = 1;

 spinner1.DecimalPlaces = 2;

 spinner1.TextAlign = 2;

 spinner1.Increment = .05;

 spinner1.Value = .05;

 radio1.Checked = true;

 checkbox1.Checked = false;

 checkbox2.Checked = false;

 combobox1.AddItem("Lighter");

 combobox1.AddItem("Normal");

 combobox1.AddItem("Darker");

 combobox1.SelectedIndex = 1;

Next, we’ll associate event handlers with various control events, such as when they are clicked or

when a control value changes. This is Step 5 of the seven basic steps for creating a form. More

about what how each event is used when we review the event handler method code later in this

exercise.

 button1.Click += OnButtonClick;

 spinner1.ValueChanged += SpinnerClick;

 radio1.Click += Resize_TrendLine;

 radio2.Click += Resize_TrendLine;

 radio3.Click += Resize_TrendLine;

 CheckBox1.Click += Extend_TrendLine;

 CheckBox2.Click += Extend_TrendLine;

 ComboBox1.SelectedIndexChanged += ChangeColor;

EasyLanguage Objects - Home Study Course 103

Once the properties (size, location, initial values, and events) have been set for each control, they

are ready to be added to a form container. In this example, we’ll be using an interim container,

called a panel, to group and hold most of the controls, and then we’ll add the panel to the

underlying form window container. The advantage of grouping controls in a secondary container,

such as a panel, is that we can easily move the entire group of controls around in the window, or

copy the entire panel and its related controls to another form, without needing to reposition the

individual controls. Once the controls have been added to the panel, a single label is added to the

top of the form followed by the entire panel container. This completes Step 6 of the seven basic

steps for creating a form.

 panel1.AddControl(button1);

 panel1.AddControl(spinner1);

 panel1.AddControl(label2);

 panel1.AddControl(label3);

 panel1.AddControl(label4);

 panel1.AddControl(label5);

 panel1.AddControl(label6);

 panel1.AddControl(radio1);

 panel1.AddControl(radio2);

 panel1.AddControl(radio3);

 panel1.AddControl(checkbox1);

 panel1.AddControl(checkbox2);

 panel1.AddControl(combobox1);

 form1.AddControl(label1);

 form1.AddControl(panel1);

Before showing the form window, its location is set to 100 pixels from the left and 100 pixels

from the top of the screen so that it will always appear at the same screen location. The form

property TopMost is set to true so that the form window floats on top of other windows instead of

jumping behind other windows when an area outside the form is clicked. This completes Step 7

of the seven basic steps for creating and displaying a custom form window.

 form1.Location(100,200);

 form1.TopMost = true;

 form1.show();

Finally, when the chart begins calculating, a pair of trendlines is created at the far left of the chart

and the ID for each is saved. The initial color of the upper trendline (resistance) is set to red and

the lower trendline (support) is set to blue. By the way, since the trendlines will be repositioned

on the last bar of the chart you may see them at this initial location.

 TL_High = TL_New(Date[10], Time[10], High, Date, Time, High);

 TL_Low = TL_New(Date[10], Time[10], Low, Date, Time, Low);

 TL_SetColor(TL_High,RGB(255,0,0));

 TL_SetColor(TL_Low,RGB(0,0,255));

end;

104 EasyLanguage Objects - Home Study Course

Next, we’ll start creating the methods for handling each of the form control events.

The first of these is a method that responds to clicking the button labeled “Reset All”. In this

method is a single statement that throws a special type of exception ‘message’ that causes the

chart to reload and the form controls to reset.

Method void OnButtonClick(elsystem.Object sender,

 elsystem.EventArgs args)

begin

 throw elsystem.RecalculateException.Create("");

end;

Create a method named Resize_Trendline using the default sender and args parameters for

a form control event handler (the same as in the previous method). Declare two local variables:

one is an object variable of type RadioButton and the other an integer.

The method uses the sender parameter to get the radio button that was selected and then reads

the text of the button to determine the thickness style of the selected button and passes the new

thickness value to the TL_SetSize function that changes the style of the upper and lower

trendlines in the chart. Each of the Radio button controls determines the thickness style of the

trendlines, set to either “Thin”, “Medium”, or “Heavy”.

Method void Resize_TrendLine (elsystem.Object sender,

 elsystem.EventArgs args)

var: RadioButton rButton, int TLSize;

begin

 rButton = sender astype RadioButton;

 TLSize = 0;

 Switch (rButton.Text)

 Begin

 Case "Thin":

 TLSize = 0;

 Case "Medium":

 TLSize = 2;

 Case "Heavy":

 TLSize = 4;

 End;

 TL_SetSize(TL_High,TLSize) ;

 TL_SetSize(TL_Low,TLSize) ;

end;

EasyLanguage Objects - Home Study Course 105

Create the ChangeColor method to handle the selection of a color item from the ComboBox1

drop-down control. The case statement reads the index value of the selected combobox item and

sets the color of the upper and lower trendlines to the appropriate RGB (red-blue-green) value.

Method void ChangeColor(elsystem.Object sender,

 elsystem.EventArgs args)

begin

 Switch (combobox1.SelectedIndex)

 Begin

 Case 0:

 TL_SetColor(TL_High,RGB(255,127,127));

 TL_SetColor(TL_Low,RGB(127,127,255));

 Case 1:

 TL_SetColor(TL_High,RGB(255,0,0));

 TL_SetColor(TL_Low,RGB(0,0,255));

 Case 2:

 TL_SetColor(TL_High,RGB(127,0,0));

 TL_SetColor(TL_Low,RGB(0,0,127));

 End;

end;

Create the Extend_TrendLine method to handle the selection of either check box control and

to set the left and right extension value for the both trendlines based on the checked state of the

respective check box.

method void Extend_TrendLine(elsystem.Object sender,

elsystem.EventArgs args)

begin

 TL_SetExtLeft(TL_High,checkbox1.checked);

 TL_SetExtLeft(TL_Low,checkbox1.checked);

 TL_SetExtRight(TL_High,checkbox2.checked);

 TL_SetExtRight(TL_Low,checkbox2.checked);

end;

Create the SpinnerClick method to handle a change in the value of the numeric up/down

(spinner1) control. This numeric value is changed by clicking the up/down spinner arrows or

typing a new value into the number box of the control. The new value is passed to another

method that updates the trendlines.

method void SpinnerClick(elsystem.Object sender,

 elsystem.EventArgs args)

begin

 Show_TrendLine(spinner1.value);

end;

106 EasyLanguage Objects - Home Study Course

The Show_TreadLine method is used to display the support and resistance values on the form

and to redraw the trendlines above and below the previous bars mid-price based on the value of

the myNum method input parameter. The upper (resistance) trendline is plotted above and the

lower (support) trendline is plotted below the mid-price by the offset amount of myNum. Each

trendline is 10 bars wide when not extended.

Method void Show_TrendLine(double myNum)

var: double midprice;

begin

 MidPrice = (High[1]+Low[1]) * .5;

 Label4.Text = "R: " + NumToStr(MidPrice+MyNum,2);

 Label5.Text = "S: " + NumToStr(MidPrice-MyNum,2);

 TL_SetEnd(TL_High, Date, Time, MidPrice+myNum);

 TL_SetBegin(TL_High, Date[10], Time[10], MidPrice+myNum);

 TL_SetEnd(TL_Low, Date, Time, MidPrice-myNum);

 TL_SetBegin(TL_Low, Date[10], Time[10], MidPrice-myNum);

end;

We also want to update the position of the trendlines based on real-time price changes, so we’ll

add a statement to call the trendline plotting method on every price tick of the last bar.

If LastBarOnChart then Show_TrendLine(spinner1.value);

Verify the Indicator.

Go to a chart and insert the indicator.

EasyLanguage Objects - Home Study Course 107

BONUS EXERCISE SECTION

The following section includes bonus examples that cover additional material not included in the

online course. These examples combine components and objects that were introduced earlier

with some new items that you may find useful as you continue to explore the capabilities of

EasyLanguage objects.

Cancelling an Order

Pending orders can be canceled using the Cancel() method of an Order object. A common way to

access pending orders for a specific symbol is to use the OrdersProvider component to create a

collection of ‘received’ orders for the current symbol. The first order in the resulting collection is

the most recent open order. Adding the Cancel() method to the end of this order identifier will

cancel that order.

OrdersProvider.Order[0].Cancel();

To cancel all open orders for the same symbol, you would simply loop through the ‘received’

orders for the symbol, using the Cancel() method on each Order identifier.

To Cancel-Replace, you simply cancel the desired order as described above, then send another

OrderTicket at the new price.

Limit Order

Any of the order ticket components allow you to place a limit order. For example, with an

OrderTicket component you could use the Properties editor to set up the order parameters with an

order Type of Limit and a specified LimitPrice. Then, use the Send() method of the OrderTicket

to submit the Limit order you described.

OrderTicket1.Send()

Or, you could modify the order parameters for a previously set up OrderTicket component

directly in your code just before you send the order, such as:

OrderTicket1.Type= tsdata.trading.OrderType.Limit;
OrderTicket1.LimitPrice = Close - .10;
OrderTicket1.Send();

108 EasyLanguage Objects - Home Study Course

EasyLanguage Objects - Home Study Course 109

 BONUS EXAMPLE #21

Objectives: (Limit Order - Cancel)

 Create a simple order form that can place and cancel a Limit order

 Cancel a Limit order

Indicator: ‘$21_LimitCancel’

This indicator uses an OrderTicket and OrdersProvider to place a Buy Limit order from a

form and allows a pending order to be canceled.

WARNING: This indicator will generate a limit order – make sure you are NOT logged

onto your real-money account. This should only be applied when logged into TradeStation

simulator.

Workspace: $21_LimitCancel

Building the Chart window:

Create: 5-minute interval using a Forex symbol

Insert Indicator: $21_LimitCancel

Components and Properties Editor Settings:

OrderTicket1:

 Symbol: symbol (reserved word for current symbol)

 Accounts: iAccounts1 (add default Account as an Input)

 Quantity: iQuantity1 (add order Quantity as an Input)

 Action: buy

 Type: limit

OrdersProvider1:

 Load : false (IMPORTANT - start with component turned off)

 Symbols: symbol (reserved word for current symbol)

 Accounts: iAccounts1 (use the same Account Input)

 Updated: OrdersProvider1_Updated

Analysis Technique:

 Initialized: AnalysisTechnique_Initialized

110 EasyLanguage Objects - Home Study Course

Indicator Exercise #21: ‘$21_LimitCancel’

Create a new Indicator and name it: ‘#21_LimitCancel’

This example combines several components and objects that we’ve used previously.

Add an OrderTicket component named OrderTicket1 object.

Add an OrdersProvider component named OrdersProvider1 object.

Use the Properties editor to set the properties for OrderTicket1 as indicated above, including an

input for the initial order Quantity of 10000 and your simulated Forex Account number. The

following two lines will be added to your code when you create the inputs.

Input: int iQuantity1(100000);

Input: string iAccount1("SIM00000");

Use the Properties editor to set the properties for OrdersProvider1 as indicated above. Create a

handler method for the Updated event. Note: Make sure to set the Load property to false to

prevent the order status event from accessing the form elements before they are displayed.

While in the Properties editor, select Analysis Technique and create a handler method for the

Initialized event.

Add a using statement for the forms and trading namespaces to minimize having to type full

control names.

using elsystem.windows.forms;

using tsdata.trading;

Declare object variables for the main form and three controls, including a textbox, a label, and a

button.

vars: Form form1(Null),

 TextBox OrderPx(Null),

 Label label1 (Null),

 Button button1(Null);

In the AnalysisTechnique_Initialized method, create the objects for a simple form consisting of

controls for setting the limit price and buttons for sending or canceling the order. The Send

button will be re-labeled to the Cancel/Replace button once the Limit order is generated.

method void AnalysisTechnique_Initialized(elsystem.Object sender,

 elsystem.InitializedEventArgs args)

begin

 form1 = form.create("Limit Order", 250, 120);

 form1.location(200,200);

 form1.topmost = true;

 OrderPx = TextBox.create("",50,20);

 label1 = label.create("Set Limit Price:",90,20);

 button1 = button.create("Place Buy Limit Order", 140, 25);

 OrderPx.Location(100,10);

 label1.Location(10,12);

 button1.Location(40,40);

EasyLanguage Objects - Home Study Course 111

Associate the button with the event handler method, add the controls to the form, set the initial

text box text value to the current inside bid, and display the form with the chart.

 button1.Click += OnButtonClick;

OrderPx.Text = NumtoStr(InsideBid,5);

 form1.AddControl(OrderPx);

 form1.AddControl(label1);

 form1.AddControl(button1);

 form1.show();

Set the Load property of the provider to true so that order status events can update the form,

now that it has been created.

 OrdersProvider1.Load = true;

A call to the ReplotButton method is added to the AnalysisTechnique_Initialized

method and to the OrdersProvider1_Updated event handler method below.

 ReplotButton();

end;

Add the OrdersProvider1_Updated method.

method void OrdersProvider1_Updated(elsystem.Object sender,

tsdata.trading.OrderUpdatedEventArgs args)

begin

 ReplotButton();

end;

The ReplotButtons method is used to set the text of the button based on the whether a limit

order is active or not. The Count property greater than ‘0’ indicates that an order is pending and

we can then check to see if it is ‘received’ and if it is a ‘limit’ order. If so, then the button text is

set to “Cancel Order”. If a Limit order is active, then also set the textbox text to the Limit order

Price. If there is no pending limit order, then the button text is set to; "Place Buy Limit Order".

Method void ReplotButton()

begin

 if OrdersProvider1.Count > 0 AND

 OrdersProvider1.Order[0].State = OrderState.received AND

 OrdersProvider1.Order[0].Type = OrderType.limit

 then begin

 button1.Text = "Cancel Order";

 OrderPx.Text= NumtoStr(OrdersProvider1.Order[0].LimitPrice,5);

 end

 else begin

 button1.Text = "Place Buy Limit Order";

 end;

end;

112 EasyLanguage Objects - Home Study Course

Finally, create an OnButtonClick method to handle buttons clicks. Check the button1 text to

determine which order to send, and make sure the text matches exactly. If the most recent order

is an active limit order, on a button click, a cancel order will be sent. If there is no active limit

order, a Buy Limit order at the price specified in the textbox will be sent to the market.

method void OnButtonClick(elsystem.Object sender,

elsystem.EventArgs args)

begin

 If LastBarOnChart then begin

 if button1.Text = "Cancel Order" AND

 OrdersProvider1.Count > 0 AND

 OrdersProvider1.Order[0].State = OrderState.received AND

 OrdersProvider1.Order[0].Type = OrderType.limit

 then

 OrdersProvider1.Order[0].Cancel();

 If button1.Text = "Place Buy Limit Order" then begin

 orderticket1.SymbolType = Category;

 orderticket1.LimitPrice = StrtoNum(OrderPx.Text);

 orderticket1.Quantity = iQuantity1;

 orderticket1.send();

 end;

 end;

end;

Verify the Indicator.

Go to a Chart and insert the indicator.

EasyLanguage Objects - Home Study Course 113

DateTime

A DateTime object represents an instant in time, expressed as a date and time of day. Values

range from 12:00:00 midnight, January 1, 0001 A.D. through 11:59:59 P.M., December 31, 9999

A.D.

In addition to being able to read the current day and time, a variety of properties and methods are

provided so that you can easily set and display date and time values in any manner you choose.

Var: DateTime myDateTime(null);

// sets date and time based on a string value and displays in an alternate format
myDateTime.Value = “12/10/2011 9:35pm” // sets user specified date/time
plot1(myDateTime.Format(("%m-%d-%y %H:%M")); // display as 12-10-11 21:35

myDateTime = elsystem.datetime.Now // get the computer date and time
myDateTime = elsysetm.datetime.CurrentTime // gets the current time only
myDateTime = elsystem.datetime.Today // get the current date without time

TimeSpan

A TimeSpan object represents a time interval that is used to measure the positive or negative

number of days, hour, minutes, and seconds between date/time values. You can use a time span

to save the difference between two dates and times or you can add (or subtract) a time span to an

existing date/time to specify a new date/time.

For example,

 Var: TimeSpan myTimeSpan(null), DateTime myDateTime(null);

// adds 5 days to the current date
myTimeSpan.TotalDays = 5
myDateTime = elsystem.datetime.Today + myTimeSpan;

// calculates time difference between current time and 5 mins before end of market
myDateTime.Value = “3:55pm”
myTimeSpan = myDateTime - elsystem.DateTime.CurrentTime;

TokenList

A TokenList object represents a collection of values that can be created from a string containing a

comma delimited list of words or numbers or by adding values using the Add property.

For example, you can create a token list containing four symbols and then access any value from

the resulting collection using the indexed Item property.

 Var: TokenList myList(null);
 myList = TokenList.Create(“msft,csco,dell,ibm”); // loads values into token list
 print(myList.Item[1]); // prints the second item “csco”

114 EasyLanguage Objects - Home Study Course

EasyLanguage Objects - Home Study Course 115

 BONUS EXAMPLE #22

Objectives: (AlarmClock)

 Create a pair of alarms from a user supplied time (or date & time)

Indicator: ‘$22_AlarmClock’

This indicator uses DateTime and TimeSpan objects to get the time difference between the

current time and a target time (with optional date). It sets a countdown timer that calls an

event method when the target time is reached.

Workspace: $22_AlarmClock

Building the window:

Create: Chart or RadarScreen

Insert Indicator: $22_AlarmClock

Components and Properties Editor Settings:

Timer1:

 Interval : 1000 (default value)

 AutoReset: True " "

 Enable: False (start with timer off)

 Elapsed: Timer1_Elapsed

Timer2:

 Interval : 1000 (set to count once a second)

 AutoReset: True " "

 Enable: True (start timer with indicator)

 Elapsed: Timer2_Elapsed

Analysis Technique:

 Initialized: AnalysisTechnique_Initialized

116 EasyLanguage Objects - Home Study Course

Indicator Exercise #21: ‘$22_AlarmClock’

Create a new Indicator and name it: ‘#22_AlarmClock’

Add a Timer component named Timer1. Add another Timer component named Timer2.

Use the Properties editor to set the properties for Timer1 and Timer2 as indicated above,

including adding a handler method for each Elapsed event. Note that Timer1 is not enabled

initially.

Using the Properties editor, select Analysis Technique and create a handler method for the

Initialized event.

Create inputs for two target times. The target times can include an optional date, such

as “8/22/2012 9:25am”. The first target should be the earlier time (or date), since the second target

will only be evaluated after the first target expires. By default, the target times are set to 5 minutes

before the regular start session and end session times.

input: string TargetTime1("9:25am"),string TargetTime2("3:55pm");

Declare object variables to hold the target time, the initial time difference to the target, and the

list of alarm times. Although this example only uses two alarms, you can easily add other times

to the list object.

var: elsystem.DateTime myAlarmTime(null),

 elsystem.TimeSpan myTimeSpan(null),

 tsdata.common.TokenList myAlarmList(null),

Declare two additional variables for the name of the sound file to be played when the alarm

elapses and the index number of the active alarm in the alarm list.

 string AlarmSound("alarmclockbeep.wav"),

 intrabarpersist int myAlarmIndex(0);

In the Initialized method, create the alarm list as an instance of a TokenList object, using the first

target as the initial value in the list. Use the ‘add to’ operator to append the second target time to

the alarm list. Note: This is where you would append additional times to the list, if you choose.

method void AnalysisTechnique_Initialized(elsystem.Object sender,

 elsystem.InitializedEventArgs args)

begin

 myAlarmList = tsdata.common.TokenList.create(TargetTime1);

 myAlarmList += TargetTime2;

Use GetAlarmTime to get the next un-elapsed target time from the list. Use GetAlarmSpan to

find the time difference between the current time and the target time. Then, use SetAlarm to set

and enable the alarm clock count down.

 myAlarmTime = GetAlarmTime(myAlarmList);

 myTimeSpan = GetAlarmSpan(myAlarmTime);

 SetAlarm(myTimeSpan);

end;

EasyLanguage Objects - Home Study Course 117

Then, add the following statements to the event handler method associated with Timer1. When

the timer elapses, it prints the alarm time in the print log, plays the sound file specified by the

input, and gets the next alarm time span to set.

method void Timer1_Elapsed(elsystem.Object sender,

 elsystem.TimerElapsedEventArgs args)

begin

 print("ALARM sounded at - ",

 elsystem.datetime.currenttime.tostring());

 condition1 = playsound(AlarmSound);

 myAlarmTime = GetAlarmTime(myAlarmList);

 myTimeSpan = GetAlarmSpan(myAlarmTime);

 SetAlarm(myTimeSpan);

end;

The Timer2_Elapsed method is executed once a second. It gets the time span of the next alarm

target and builds a string with the days, hour, minutes, and seconds remaining, or a message that

all alarms have expired.

method void Timer2_Elapsed(elsystem.Object sender,

elsystem.TimerElapsedEventArgs args)

var: string TimeLeft, elsystem.TimeSpan TS;

begin

 TS = GetAlarmSpan(myAlarmTime);

 If myTimeSpan.TotalSeconds > 0 then

 TimeLeft = TS.Days.tostring() + "d "

 + TS.Hours.tostring() + "h "

 + TS.Minutes.tostring() + "m "

 + TS.Seconds.tostring() + "s "

 Else

 TimeLeft = "No alarms active";

The first plot displays the time remaining.

 plot1(TimeLeft,"Count Down");

A second plot displays the actual target time and ‘T’arget number.

 If myAlarmTime.ELDateTimeEx>=1 then

 plot2(myAlarmTime.format("%m/%d/%y %H:%M T"

 + myAlarmIndex.tostring()),"Target")

 else

 plot2(myAlarmTime.format("%H:%M T"

 + myAlarmIndex.tostring()),"Target");

end;

Create a method that converts a time span (time remaining) to milliseconds, assigns it to the

Timer1 counter Interval property, and turns the timer on. If the time remaining is less than one

second (<1000 ms) the timer is turned off.

method void SetAlarm(elsystem.TimeSpan myTimeSpan)

begin

 Timer1.Interval = myTimeSpan.TotalMilliseconds;

 If Timer1.Interval < 1000 then

 Timer1.Enable = false

 Else

 Timer1.Enable = true;

end;

118 EasyLanguage Objects - Home Study Course

The GetAlarmTime method returns an object representing the next alarm target. The first

statement creates a DateTime object named myAlarmTime. The For loop iterates through the

list of alarm times (strings in the token list) and uses the DateTime.Parse method to convert an

alarm string to a date time object.

method elsystem.DateTime GetAlarmTime(tsdata.common.tokenlist

myAlarmList)

begin

 myAlarmTime = elsystem.DateTime.Create();

 For myAlarmIndex = 0 to myAlarmList.Count-1 begin

 myAlarmTime = elsystem.datetime.Parse(myAlarmList[myAlarmIndex]);

The call to GetAlarmSpan gets the time remaining and returns the alarm time if the span is a

positive number. If no positive time span is found, a blank alarm time is returned.

 myTimeSpan = GetAlarmSpan(myAlarmTime);

 If myTimeSpan.TotalSeconds>0 then begin

 myAlarmIndex = myAlarmIndex + 1;

 Return myAlarmTime;

 end;

 end;

 return myAlarmTime;

end;

The GetAlarmSpan method returns an object representing the time remaining between now and

the myAlarmTime. The first statement creates a TimeSpan object named myTimeSpan. If the

number of days to the next alarm is one or more, the time span is calculated using a full date and

time. If just a time is found, the time span is calculated from the current time.

method elsystem.TimeSpan GetAlarmSpan(elsystem.DateTime myAlarmTime)

begin

 myTimeSpan = elsystem.TimeSpan.Create();

 If myAlarmTime.ELDateTimeEx >= 1 then

 myTimeSpan = myAlarmTime - elsystem.datetime.now

 Else if myAlarmTime.ELTime > 0 then

 myTimeSpan = myAlarmTime - elsystem.datetime.currenttime;

Return myTimeSpan;

end;

Verify the Indicator.

Go to a Chart or RadarScreen and insert the indicator. Use the inputs to change the alarm times.

EasyLanguage Objects - Home Study Course 119

Analysis Technique - Uninitialized Event

The Uninitialized event of an Analysis Technique is used to call an event handler method that

contains code that is executed prior to the calculation of the analysis technique finishing.

An AnalysisTechnique_Uninitialized event handler method might be used to save data, or execute

any cleanup code that might be required to run, before an analysis technique shuts down. This

may happen when the analysis technique is refreshed; when it is removed from an analysis

window; or when a window, workspace, or desktop is closed. However, in the case of an

exception error, there are times that the uninitialized event handler may not get called.

Try-Catch

Try-Catch blocks are used to test the execution of a set of code statements in the Try block so that

you may deal with any failure, error, or exception in the Catch block.

For example, you might want to test for an anticipated error condition when accessing data from a

component. If a specific condition occurs, you could set a flag than can be used later to prevent

further calculations or print a custom message to the user.

 try
 Value1 = FQ1.Quote[FundamentalField].DoubleValue[0] ;
 OkToCalculate = true ;
 catch (NoFundamentalDataAvailableException NFDEx)
 OkToCalculate = false ;
 Print("NMF - No fundamental value for primary symbol.") ;
 end ;

Or, you may want to determine the existence of a file by testing for the success or failure of a file

read statement and creating the file if it doesn’t exist.

 try
 doc.Load(“c:filename”); // try reading from a file
 catch(elsystem.io.filenotfoundexception ex)
 doc.Save(“c:filename”); // create file if not found
 end;

120 EasyLanguage Objects - Home Study Course

XML Objects

EasyLanguage supports a set of objects that allow you to create an XML data structure, save it to

a file, and read it back at a later time. The XML objects in EasyLanguage are based on the

commonly used XML Document Object Model that includes nodes, elements, attributes, and

other items associated with XML data hierarchies.

The basic building block in XML is the element, which consists of data placed between a pair of

start and end tags. The start tag is made up of angled brackets enclosing the element name, such

as <symbol>, and the end tag is the same except for the addition of a ‘slash’ in front of the

element name, such as </symbol>.

An XML data structure consists of multiple elements, where each element represents data ranging

from a single piece of information, such as a word or number, to other child elements with

additional data. In EasyLanguage, there are XML objects to create elements, add and remove

elements in a data structure, and navigate the structure to read and write data within the elements.

For example, the following XML data structure consists of a ‘root’ element that contains a

‘symbol’ element containing three related data elements: a symbol name, date, and price.

<root>
<symbol>

<name>MSFT</name>
<date>9/10/2011</date>
<price>34.56</price>

</symbol>
<root>

In addition, a start tag can include additional information inside the angle brackets called

attributes. For example, the following consists of two ‘step’ elements where the first has an

attribute number of ‘1’ and the second a number of ‘2’.

 <root>
 <step number=”1”>First Item</step>
 <step number=”2”>Second Item</step>
 </root>

EasyLanguage Objects - Home Study Course 121

 BONUS EXAMPLE #23

Objectives: (XMLPersist Indicator)

 Create an XML file to save and restore data when an indicator recalculates

Indicator: ‘$23_XMLPersist’

This indicator uses XML objects to save information about the current symbol to an XML file

when an indicator is exited or refreshed (uninitialized) that can be read back when the

indicator is re-started (initialized). For example, this allows you to persist symbol values

from the current indicator instance that you want to remember the next time the indicator runs

on the same symbol.

Workspace: $23_XMLPersist

Building the window:

Create: 30-minute interval

Insert Indicator: $23_XMLPersist

Components and Properties Editor Settings:

 No components

Analysis Technique:

 Initialized: AnalysisTechnique_Initialized

 Uninitialized: AnalysisTechnique_UnInitialized

Usage Note:

When you first apply the indicator to a new chart or symbol, the status line of the indicator

will display only the symbol name and no additional information. When you exit the chart,

or press Control-R to refresh the chart, the Close price is saved to the XML file with the

current date and time. The next time the symbol is charted, the saved price and time from the

XML file is displayed on the status line of the sub-graph following the symbol name.

122 EasyLanguage Objects - Home Study Course

Indicator Exercise #23: ‘$23_XMLPersist’

Create a new Indicator and name it: ‘#23_XMLPersist’

Add a using statement for the XML namespace to eliminate the need to type the full names of

XML objects.

using elsystem.xml;

Declare object variables for a set of XML objects that will be used to create and manage data in

an external XML file.

var: XmlDocument doc(null),

 XmlElement root(null),

 XmlElement eLevel1(null),

 XmlElement eLevel2(null),

 XmlNode nNode(null);

Declare another variable that will be used to test for the existence of the XML data file. If false,

the file needs to be created.

Var: bool filefound(false);

Declare an input for the XML file name.

input: string xmlFileName("C:\RefSym.xml");

Using the Properties editor, select Analysis Technique and create a handler method for the

Initialized event. Then, create another handler method for the Uninitialized event that will be called

whenever we exit or recalculate the analysis technique.

In the Initialized method, create an instance of a xml document object and initialize the file found

flag to true.

method void AnalysisTechnique_Initialized(elsystem.Object sender,

 elsystem.InitializedEventArgs args)

begin

 doc = new xmldocument;

 filefound = true;

Next, we’re going to test to see if the XML document already exists using a Try-Catch statement.

If the doc.Load call in the Try clause fails, the file found flag is set to false under the Catch

clause.

 try

 doc.Load(xmlFileName);

 catch(elsystem.io.filenotfoundexception ex)

 filefound = false;

 end;

If the file is not found, we’ll create it by defining a root object named ‘data’ and saving it to the

new XML file.

 If filefound = false then

 Begin

 root = doc.CreateElement("data");

 doc.AppendChild(root);

 doc.Save(xmlFileName);

 End

EasyLanguage Objects - Home Study Course 123

If the file already exists, read the file’s XML structure to the root object.

 Else

 Begin

 root = doc.DocumentElement;

 end;

The FindSymbol method returns the node containing data for the current symbol. The data is

blank if the symbol hasn’t previously been used or if the file was just created.

 nNode = FindSymbol();

end;

The AnalysisTechnique_UnInitialized method is executed when the indicator is shut down, such

as when exiting TradeStation, or whenever the indicator is recalculated, such as with a chart

refresh. In this method, add a call to SaveSymbol.

method void AnalysisTechnique_UnInitialized(elsystem.Object sender,

elsystem.UnInitializedEventArgs args)

begin

 SaveSymbol();

end;

In the SaveSymbol method we’ll update the data we want to save and write the data out to the

XML file, in this case the current date/time and the close price.

Method void SaveSymbol()

begin

 nNode.Item["date"].InnerText = elsystem.datetime.now.Format("%m-

%d-%Y %H:%M");

 nNode.Item["price"].InnerText = Close.tostring();

 doc.Save(xmlFileName);

end;

The FindSymbol method is used to find data for a saved symbol, or to create blank data for a

new symbol, and returns the XML node of the requested data. The first two local variables are

used to find and save the index number of the element that matches the current symbol. The next

local variable declares an XML object that will hold the list of ‘symbol’ elements to search. The

final variable will hold the node containing symbol data that is returned by the method.

Method xmlNode FindSymbol()

var: int iIndex, int sNumb, XmlNodeList tList, XmlNode tNode;

begin

The first several statements get a list of first level ‘symbol’ elements and loop through them to

see if any ‘name’ sub element matches the current symbol. Variable sNumb is set to the index

number of the symbol element, if found.

 tList = root.GetElementsByTagName("symbol");

 sNumb = -1;

 for iIndex = 0 to tList.count-1 begin

 If tList.ItemOf[iIndex].Item["name"].innertext=symbol then

 sNumb = iIndex;

 end;

124 EasyLanguage Objects - Home Study Course

If the symbol was not in the list, a new symbol element is created with the name, date, and price

appended as second level child elements. The new symbol element structure is appended to the

root and saved to the file.

 If sNumb = -1 then begin

 eLevel1 = doc.CreateElement("symbol");

 eLevel2 = doc.CreateElement("name");

 eLevel2.innertext = symbol;

 eLevel1.AppendChild(eLevel2);

 eLevel2 = doc.CreateElement("date");

 eLevel1.AppendChild(eLevel2);

 eLevel2 = doc.CreateElement("price");

 eLevel1.AppendChild(eLevel2);

 root.AppendChild(eLevel1);

 doc.Save(xmlFileName);

The newly created symbol element structure is assigned to the local method object tnode, or if

the symbol previously existed, tnode is set to the indexed symbol element. The return value

of the method is then set to the node.

 tNode = eLevel1;

 end

 Else begin

 tNode = tList.ItemOf[sNumb];

 End;

 Return tNode;

end;

Finally, create a method to plot the values for the current node. For existing or refreshed symbols,

the date and price will display the saved values. Notice that the call to PlotValues() is the only

statement in the main body of your EasyLanguage code.

Method void PlotValues()

begin

 plot1(nNode.Item["name"].Innertext,”Symbol”);

 plot2(nNode.Item["date"].InnerText,”Saved Date”);

 plot3(nNode.Item["price"].InnerText,”Saved Price”);

end;

PlotValues();

Verify the Indicator.

Go to a Chart and insert the indicator. You will find that the newly created XML file has been

added to the specified path and will contain initial XML data for the current symbol.

EasyLanguage Objects - Home Study Course 125

Appendix A

Commonly Used Fundamental Fields

Snap Shot Fields (Non Historical)

Fundamental Quote String Description

ATA Assets Total (FY)

QTA Assets Total (MRQ)

BETA_DOWN Beta (S&P500) Down Market

BETA_UP Beta (S&P500) Up Market

ABVPS Book Value per Share (FY)

QBVPS Book Value per Share (MRQ)

ACURRATIO Current Ratio (FY)

QCURRATIO Current Ratio (MRQ)

ADIVSHR Dividend per Share (FY)

YIELD Dividend Yield

AEPSINCLXO EPS Including Extra (FY)

QEPSINCLXO EPS Including Extra (MRQ)

IPCTHLD Institutional Percent Held

ACURLIAB Liabilities Current (FY)

QCURLIAB Liabilities Current (MRQ)

APRICE2BK Price to Book (FY)

PRICE2BK Price to Book (MRQ)

APR2REV Price to Sales (FY)

QPR2REV Price to Sales (MRQ)

AQUICKRATI Quick Ratio (FY)

QQUICKRATI Quick Ratio (MRQ)

ATOTD2EQ Total Debt to Total Equity (FY)

QTOTD2EQ Total Debt to Total Equity (MRQ)

F_LSTUPDAT Last Financial Update

Historical Fields

ATOT Total Assets

STLD Total Debt

LTLL Total Liabilities

SBBF Earnings Per Share

SNCC Net Change in Cash

RTLR Total Revenue

ETOE Total Operating Expense

NINC Net Income

DDPS1 Dividends per Share - Common Stock Primary Issue

QTCO Total Common Shares Outstanding

FY = Fiscal Year, MRQ = Most Recent Quarter

126 EasyLanguage Objects - Home Study Course

Appendix B

Downloading the EasyLanguage code examples for this course

All the EasyLanguage examples and workspaces used in this course may be downloaded from the

web. The name of the file is ELOBJECTS.ZIP. It may be downloaded from the following link:

www.tradestation.com/education/downloads/ELOBJECTS

http://www.tradestation.com/education/downloads/ELOBJECTS.ZIP

